Identity principles for commuting holomorphic self-maps of the unit disc

被引:20
|
作者
Bracci, F
Tauraso, R
Vlacci, F
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
holomorphic self-maps; commuting functions; fixed points; Wolff point;
D O I
10.1016/S0022-247X(02)00080-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f, g be two commuting holomorphic self-maps of the unit disc. If f and g agree at the common Wolff point up to a certain order of derivatives (no more than 3 if the Wolff point is on the unit circle), then f equivalent to g. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:451 / 473
页数:23
相关论文
共 50 条
  • [1] Continuous semigroups of holomorphic self-maps of the unit disc
    Shoikhet, David
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 59 (04):
  • [2] On the Koenigs function of semigroups of holomorphic self-maps of the unit disc
    Filippo Bracci
    Manuel D. Contreras
    Santiago Díaz-Madrigal
    [J]. Analysis and Mathematical Physics, 2018, 8 : 521 - 540
  • [3] Commuting holomorphic maps of the unit disc
    Tauraso, R
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 945 - 953
  • [4] On the Koenigs function of semigroups of holomorphic self-maps of the unit disc
    Bracci, Filippo
    Contreras, Manuel D.
    Diaz-Madrigal, Santiago
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) : 521 - 540
  • [5] Backward orbits and petals of semigroups of holomorphic self-maps of the unit disc
    Filippo Bracci
    Manuel D. Contreras
    Santiago Díaz-Madrigal
    Hervé Gaussier
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 411 - 441
  • [6] Backward orbits and petals of semigroups of holomorphic self-maps of the unit disc
    Bracci, Filippo
    Contreras, Manuel D.
    Diaz-Madrigal, Santiago
    Gaussier, Herve
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (02) : 411 - 441
  • [7] Simultaneous models for commuting holomorphic self-maps of the ball
    Arosio, Leandro
    Bracci, Filippo
    [J]. ADVANCES IN MATHEMATICS, 2017, 321 : 486 - 512
  • [8] Some inequalities for holomorphic self-maps of the unit disc with two fixed points
    Goryainov, Viktor V.
    [J]. COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VII, 2017, 699 : 129 - 136
  • [9] Contact points and fractional singularities for semigroups of holomorphic self-maps of the unit disc
    Bracci, Filippo
    Gumenyuk, Pavel
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2016, 130 : 185 - 217
  • [10] Contact points and fractional singularities for semigroups of holomorphic self-maps of the unit disc
    Filippo Bracci
    Pavel Gumenyuk
    [J]. Journal d'Analyse Mathématique, 2016, 130 : 185 - 217