Backward orbits and petals of semigroups of holomorphic self-maps of the unit disc

被引:5
|
作者
Bracci, Filippo [1 ]
Contreras, Manuel D. [2 ,3 ]
Diaz-Madrigal, Santiago [2 ,3 ]
Gaussier, Herve [4 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[2] Univ Seville, Dept Matemat Aplicada 2, Camino Descubrimientos S-N, Seville 41092, Spain
[3] Univ Seville, IMUS, Camino Descubrimientos S-N, Seville 41092, Spain
[4] Univ Grenoble Alpes, IF, CNRS, F-38000 Grenoble, France
关键词
Semigroups of holomorphic functions; Backward orbits; Petals; Koenigs function; Holomorphic models;
D O I
10.1007/s10231-018-0783-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the backward invariant set of one-parameter semigroups of holomorphic self-maps of the unit disc. Such a set is foliated in maximal invariant curves, and its open connected components are petals, which are, in fact, images of Poggi-Corradini's type pre-models. Hyperbolic petals are in one-to-one correspondence with repelling fixed points, while only parabolic semigroups can have parabolic petals. Petals have locally connected boundaries, and except a very particular case, they are indeed Jordan domains. The boundary of a petal contains the Denjoy-Wolff point, and except such a fixed point, the closure of a petal contains either no other boundary fixed points or a unique repelling fixed point. We also describe petals in terms of geometric and analytic behavior of Koenigs functions using divergence rate and universality of models. Moreover, we construct a semigroup having a repelling fixed point in such a way that the intertwining map of the pre-model is not regular.
引用
收藏
页码:411 / 441
页数:31
相关论文
共 50 条
  • [1] Backward orbits and petals of semigroups of holomorphic self-maps of the unit disc
    Filippo Bracci
    Manuel D. Contreras
    Santiago Díaz-Madrigal
    Hervé Gaussier
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 411 - 441
  • [2] Continuous semigroups of holomorphic self-maps of the unit disc
    Shoikhet, David
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 59 (04):
  • [3] On the Koenigs function of semigroups of holomorphic self-maps of the unit disc
    Filippo Bracci
    Manuel D. Contreras
    Santiago Díaz-Madrigal
    [J]. Analysis and Mathematical Physics, 2018, 8 : 521 - 540
  • [4] On the Koenigs function of semigroups of holomorphic self-maps of the unit disc
    Bracci, Filippo
    Contreras, Manuel D.
    Diaz-Madrigal, Santiago
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) : 521 - 540
  • [5] Contact points and fractional singularities for semigroups of holomorphic self-maps of the unit disc
    Bracci, Filippo
    Gumenyuk, Pavel
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2016, 130 : 185 - 217
  • [6] Contact points and fractional singularities for semigroups of holomorphic self-maps of the unit disc
    Filippo Bracci
    Pavel Gumenyuk
    [J]. Journal d'Analyse Mathématique, 2016, 130 : 185 - 217
  • [7] Asymptotic monotonicity of the orthogonal speed and rate of convergence for semigroups of holomorphic self-maps of the unit disc
    Bracci, Filippo
    Cordella, Davide
    Kourou, Maria
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (02) : 527 - 546
  • [8] Asymptotic upper bound for tangential speed of parabolic semigroups of holomorphic self-maps in the unit disc
    Davide Cordella
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2767 - 2784
  • [9] Topological invariants for semigroups of holomorphic self-maps of the unit disk
    Bracci, Filippo
    Contreras, Manuel D.
    Diaz-Madrigal, Santiago
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (01): : 78 - 99
  • [10] ON THE MONOTONICITY OF THE SPEEDS FOR SEMIGROUPS OF HOLOMORPHIC SELF-MAPS OF THE UNIT DISK
    Betsakos, Dimitrios
    Karamanlis, Nikolaos
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1299 - 1319