Monte Carlo simulation and stochastic algorithms for optimizing supply chain management in an uncertain environment

被引:0
|
作者
Jellouli, O [1 ]
Chatelet, E [1 ]
机构
[1] Univ Technol Troyes, Syst Modelling & Dependabil Lab, F-10010 Troyes, France
关键词
stochastic algorithms; supply chain; Monte Carlo simulation; probabilistic models; optimization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we consider a supply chain with stochastic demands and delivery times. We try to find optimal parameters which will allow us to reach performances related to the percentage of customers satisfied. For this purpose, we use Monte Carlo simulation and two meta-heuristics taboo and kangaroo methods. Furthermore, short term and long term strategy are considered. This method allows us to optimize our system considering stochastic parameters and prediction errors. Thus, we use statistical tests to compare results given by Monte Carlo simulation. Numerical results are given in a special case. The same approach can be used to more complex problems dealing with uncertain environment.
引用
收藏
页码:1840 / 1844
页数:5
相关论文
共 50 条
  • [41] Markov Chain Monte Carlo Algorithms: Theory and Practice
    Rosenthal, Jeffrey S.
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 157 - 169
  • [42] A Markov chain perspective on adaptive Monte Carlo algorithms
    Desai, PY
    Glynn, PW
    [J]. WSC'01: PROCEEDINGS OF THE 2001 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2001, : 379 - 384
  • [43] MARKOV CHAIN SIMULATION FOR MULTILEVEL MONTE CARLO
    Jasra, Ajay
    Law, Kody J. H.
    Xu, Yaxian
    [J]. FOUNDATIONS OF DATA SCIENCE, 2021, 3 (01): : 27 - 47
  • [44] Monte Carlo Tennis: A Stochastic Markov Chain Model
    Newton, Paul K.
    Aslam, Kamran
    [J]. JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS, 2009, 5 (03)
  • [45] Multiresolution genetic algorithms and Markov chain Monte Carlo
    Holloman, Christopher H.
    Lee, Herbert K. H.
    Higdon, Dave M.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (04) : 861 - 879
  • [46] Markov chain Monte Carlo algorithms with sequential proposals
    Joonha Park
    Yves Atchadé
    [J]. Statistics and Computing, 2020, 30 : 1325 - 1345
  • [47] Markov chain Monte Carlo algorithms with sequential proposals
    Park, Joonha
    Atchade, Yves
    [J]. STATISTICS AND COMPUTING, 2020, 30 (05) : 1325 - 1345
  • [48] Laplace expansions in Markov chain Monte Carlo algorithms
    Guthenneuc-Jouyaux, C
    Rousseau, J
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (01) : 75 - 94
  • [49] MONTE-CARLO SIMULATION OF POLYETHYLENE CHAIN
    MITRA, CK
    GOVIL, G
    [J]. INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 1976, 14 (05): : 297 - 301
  • [50] MONTE-CARLO SIMULATION FOR MANAGEMENT
    RICHMAN, E
    COLEMAN, D
    [J]. CALIFORNIA MANAGEMENT REVIEW, 1981, 23 (03) : 82 - 91