Combination of Neural Networks for Multi-label Document Classification

被引:4
|
作者
Lenc, Ladislav [1 ,2 ]
Kral, Pavel [1 ,2 ]
机构
[1] Univ West Bohemia, Fac Appl Sci, Dept Comp Sci & Engn, Plzen, Czech Republic
[2] Univ West Bohemia, Fac Appl Sci, NTIS, Plzen, Czech Republic
关键词
Combination; Czech; Deep neural networks; Document classification; Multi-label; Thresholding;
D O I
10.1007/978-3-319-59569-6_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with multi-label classification of Czech documents using several combinations of neural networks. It is motivated by the assumption that different nets can keep some complementary information and that it should be useful to combine them. The main contribution of this paper consists in a comparison of several combination approaches to improve the results of the individual neural nets. We experimentally show that the results of all the combination approaches outperform the individual nets, however they are comparable. However, the best combination method is the supervised one which uses a feed-forward neural net with sigmoid activation function.
引用
收藏
页码:278 / 282
页数:5
相关论文
共 50 条
  • [21] AdaHGNN: Adaptive Hypergraph Neural Networks for Multi-Label Image Classification
    Wu, Xiangping
    Chen, Qingcai
    Li, Wei
    Xiao, Yulun
    Hu, Baotian
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 284 - 293
  • [22] MULTI-LABEL CLASSIFICATION OF REMOTE SENSING IMAGERY WITH DEEP NEURAL NETWORKS
    Alshehri, Aaliyah
    Bazi, Yakub
    Ammour, Nassim
    Alajlan, Naif
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 97 - 100
  • [23] Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification
    Nam, Jinseok
    Mencia, Eneldo Loza
    Kim, Hyunwoo J.
    Fuernkranz, Johannes
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [24] Statistical topic models for multi-label document classification
    Timothy N. Rubin
    America Chambers
    Padhraic Smyth
    Mark Steyvers
    Machine Learning, 2012, 88 : 157 - 208
  • [25] Learning Section Weights for Multi-label Document Classification
    Fard, Maziar Moradi
    Bayod, Paula Sorolla
    Motarjem, Kiomars
    Nejadi, Mohammad Alian
    Akhondi, Saber
    Thorne, Camilo
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, PT II, NLDB 2024, 2024, 14763 : 359 - 366
  • [26] Labelset topic model for multi-label document classification
    Ximing Li
    Jihong Ouyang
    Xiaotang Zhou
    Journal of Intelligent Information Systems, 2016, 46 : 83 - 97
  • [27] Triplet Transformer Network for Multi-Label Document Classification
    Melsbach, Johannes
    Stahlmann, Sven
    Hirschmeier, Stefan
    Schoder, Detlef
    PROCEEDINGS OF THE 2022 ACM SYMPOSIUM ON DOCUMENT ENGINEERING, DOCENG 2022, 2022,
  • [28] Statistical topic models for multi-label document classification
    Rubin, Timothy N.
    Chambers, America
    Smyth, Padhraic
    Steyvers, Mark
    MACHINE LEARNING, 2012, 88 (1-2) : 157 - 208
  • [29] Labelset topic model for multi-label document classification
    Li, Ximing
    Ouyang, Jihong
    Zhou, Xiaotang
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2016, 46 (01) : 83 - 97
  • [30] Exploiting Label Dependencies for Multi-Label Document Classification Using Transformers
    Fallah, Haytame
    Bruno, Emmanuel
    Bellot, Patrice
    Murisasco, Elisabeth
    PROCEEDINGS OF THE 2023 ACM SYMPOSIUM ON DOCUMENT ENGINEERING, DOCENG 2023, 2023,