We investigate the small ball problem for d-dimensional fractional Brownian sheets by functional analytic methods. For this reason we show that integration operators of Riemann Liouville and Weyl type are very close in the sense of their approximation properties, i.e., the Kolmogorov and entropy numbers of their difference tend to zero exponentially. This allows us to carry over properties of the Weyl operator to the Riemann Liouville one, leading to sharp small ball estimates for some fractional Brownian sheets. In particular, we extend Talagrand's estimate for the 2-dimensional Brownian sheet to the fractional case. When passing from dimension 1 to dimension dgreater than or equal to2, we use a quite general estimate for the Kolmogorov numbers of the tensor products of linear operators.
机构:
Zhejiang Hongshang Univ, Coll Stat & Math, Hangzhou 310035, Peoples R ChinaZhejiang Hongshang Univ, Coll Stat & Math, Hangzhou 310035, Peoples R China