Domains with algebraic X-ray transform

被引:1
|
作者
Agranovsky, Mark [1 ]
机构
[1] Bar Ilan Univ, Ramat Gan, Israel
关键词
Convex domains; X-ray transform; Volumes; Algebraic hypersurface; Ellipsoid;
D O I
10.1007/s13324-022-00657-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Koldobsky, Merkurjev and Yaskin proved in (Koldobsky in Adv Math 320:876-886, 2017) that given a convex body K subset of R-n, n is odd, with smooth boundary, such that the volume of the intersection K boolean AND L of K with a hyperplane L subset of R-n (the sectional volume function) depends polynomially on the distance t of L to the origin, then the boundary of K is an ellipsoid. In even dimension, the sectional volume functions are never polynomials in t, nevertheless in the case of ellipsoids their squares are. We conjecture that the latter property fully characterizes ellipsoids and, disregarding the parity of the dimension, ellipsoids are the only convex bodies with smooth boundaries whose sectional volume functions are roots (of some power) of polynomials. In this article, we confirm this conjecture for planar domains, bounded by algebraic curves. A multidimensional version in terms of chords lengths, i.e., of X-ray transform of the characteristic function, is given. The result is motivated by Arnold's conjecture on characterization of algebraically integrable bodies.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Generalized Radon Transform and X-ray Tomography
    Anikonov, D. S.
    Konovalova, D. S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 : 440 - 447
  • [42] NONLOCAL INVERSION FORMULAS FOR THE X-RAY TRANSFORM
    GREENLEAF, A
    UHLMANN, G
    DUKE MATHEMATICAL JOURNAL, 1989, 58 (01) : 205 - 240
  • [43] The spherical X-ray transform of texture goniometry
    Schaeben, H
    Sprössig, W
    van den Boogaart, G
    CLIFFORD ANALYSIS AND ITS APPLICATIONS, 2001, 25 : 283 - 291
  • [44] Imaging of magnetic domains with the X-ray microscope at BESSY using X-ray magnetic circular dichroism
    Fischer, P
    Schutz, G
    Schmahl, G
    Guttmann, P
    Raasch, D
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1996, 101 (03): : 313 - 316
  • [45] OPTICAL AND X-RAY DISTINCTION OF FERROELECTRIC NONFERROELASTIC DOMAINS
    JANOVEC, V
    RICHTEROVA, L
    LITVIN, DB
    FERROELECTRICS, 1992, 126 (1-4) : 287 - 292
  • [46] X-RAY TOPOGRAPHY OF FERROMAGNETIC DOMAINS OF SILICON IRON
    MAKAROV, VP
    MOLOTILO.BV
    SOVIET PHYSICS CRYSTALLOGRAPHY, USSR, 1970, 14 (06): : 945 - &
  • [47] Imaging of magnetic domains by transmission x-ray microscopy
    Fischer, P
    Eimuller, T
    Schutz, G
    Guttmann, P
    Schmahl, G
    Pruegl, K
    Bayreuther, G
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1998, 31 (06) : 649 - 655
  • [48] Powder X-ray diffraction and microstructure in ferroelectric domains
    Valot, C
    Floquet, N
    Mesnier, M
    Niepce, JC
    JOURNAL DE PHYSIQUE IV, 1996, 6 (C4): : 71 - 89
  • [49] X-RAY DIFFRACTION TOPOGRAPHY OF MAGNETIC DOMAINS IN ORTHOFERRITES
    PATEL, JR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (03): : 319 - &
  • [50] STUDY OF FERROELECTRIC DOMAINS BY MEANS OF X-RAY TOPOGRAPHS
    AUTHIER, A
    BULLETIN DE LA SOCIETE FRANCAISE MINERALOGIE ET DE CRISTALLOGRAPHIE, 1968, 91 (06): : 666 - &