Conductance quantization and transport gaps in disordered graphene nanoribbons

被引:262
|
作者
Mucciolo, E. R. [1 ]
Castro Neto, A. H. [2 ]
Lewenkopf, C. H. [3 ,4 ]
机构
[1] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Univ Estado Rio de Janeiro, Dept Fis Teor, BR-20550900 Rio De Janeiro, Brazil
[4] Lab Nacl Luz Sincrotron, BR-13084971 Campinas, SP, Brazil
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 07期
关键词
Anderson model; ballistic transport; electric admittance; graphene; nanostructured materials; quantum interference phenomena; BALLISTIC-TRANSPORT;
D O I
10.1103/PhysRevB.79.075407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study numerically the effects of edge and bulk disorder on the conductance of graphene nanoribbons. We compute the conductance suppression due to Anderson localization induced by edge scattering and find that even for weak edge roughness, conductance steps are suppressed and transport gaps are induced. These gaps are approximately inversely proportional to the nanoribbon width. On/off conductance ratios grow exponentially with the nanoribbon length. Our results impose severe limitations to the use of graphene in ballistic nanowires.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Dirac point resonances due to atoms and molecules adsorbed on graphene and transport gaps and conductance quantization in graphene nanoribbons with covalently bonded adsorbates
    Ihnatsenka, Siarhei
    Kirczenow, George
    [J]. PHYSICAL REVIEW B, 2011, 83 (24)
  • [2] Transport in disordered graphene nanoribbons
    Martin, Ivar
    Blanter, Ya. M.
    [J]. PHYSICAL REVIEW B, 2009, 79 (23):
  • [3] Conductance quantization in graphene nanoribbons: adiabatic approximation
    Katsnelson, M. I.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2007, 57 (03): : 225 - 228
  • [4] Conductance quantization in graphene nanoribbons: adiabatic approximation
    M. I. Katsnelson
    [J]. The European Physical Journal B, 2007, 57 : 225 - 228
  • [5] Electron Transport in Disordered Graphene Nanoribbons
    Han, Melinda Y.
    Brant, Juliana C.
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (05)
  • [6] Conductance quantization in strongly disordered graphene ribbons
    Ihnatsenka, S.
    Kirczenow, G.
    [J]. PHYSICAL REVIEW B, 2009, 80 (20):
  • [7] Lack of universal conductance features in disordered graphene nanoribbons
    La Magna, Antonino
    Deretzis, Ioannis
    Forte, Giuseppe
    Pucci, Renato
    [J]. PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7 NO 3-4, 2010, 7 (3-4): : 1246 - 1250
  • [8] Energy and transport gaps in etched graphene nanoribbons
    Molitor, F.
    Stampfer, C.
    Guettinger, J.
    Jacobsen, A.
    Ihn, T.
    Ensslin, K.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (03)
  • [9] Electronic Transport Properties of Disordered Graphene Nanoribbons
    Wakabayashi, Katsunori
    Takane, Yositake
    Sigrist, Manfred
    [J]. 25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 2, 2009, 150
  • [10] Conductance fluctuation of edge-disordered graphene nanoribbons: Crossover from diffusive transport to Anderson localization
    Takashima, Kengo
    Yamamoto, Takahiro
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (09)