Diffusion of molecules and macromolecules in thylakoid membranes

被引:106
|
作者
Kirchhoff, Helmut [1 ]
机构
[1] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA
来源
基金
美国国家科学基金会;
关键词
Photosynthesis; Thylakoid membrane; Diffusion coefficient; Percolation theory; Macromolecular crowding; PHOTOSYNTHETIC ELECTRON-TRANSPORT; HARVESTING COMPLEX-II; PHOTOSYSTEM-II; LATERAL DIFFUSION; PROTEIN DIFFUSION; XANTHOPHYLL CYCLE; CRYSTAL-STRUCTURE; LIPID DIFFUSION; LIGHT; ORGANIZATION;
D O I
10.1016/j.bbabio.2013.11.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The survival and fitness of photosynthetic organisms is critically dependent on the flexible response of the photosynthetic machinery, harbored in thylakoid membranes, to environmental changes. A central element of this flexibility is the lateral diffusion of membrane components along the membrane plane. As demonstrated, almost all functions of photosynthetic energy conversion are dependent on lateral diffusion. The mobility of both small molecules (plastoquinone, xanthophylls) as well as large protein supercomplexes is very sensitive to changes in structural boundary conditions. Knowledge about the design principles that govern the mobility of photosynthetic membrane components is essential to understand the dynamic response of the photosynthetic machinery. This review summarizes our knowledge about the factors that control diffusion in thylakoid membranes and bridges structural membrane alterations to changes in mobility and function. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:495 / 502
页数:8
相关论文
共 50 条
  • [21] MACRODOMAIN ORGANIZATION IN THE THYLAKOID MEMBRANES
    GARAB, G
    PHOTOSYNTHESIS RESEARCH, 1992, 34 (01) : 84 - 84
  • [22] Macroorganisation and flexibility of thylakoid membranes
    Lambrev, Petar H.
    Akhtar, Parveen
    BIOCHEMICAL JOURNAL, 2019, 476 : 2981 - 3018
  • [23] Polylysine effect on thylakoid membranes
    Doltchinkova, Virjinia
    Vitkova, Victoria
    BIOPHYSICAL CHEMISTRY, 2020, 266
  • [24] THE STRUCTURE OF CYANOBACTERIAL THYLAKOID MEMBRANES
    HLADIK, J
    SOFROVA, D
    PHOTOSYNTHETICA, 1983, 17 (02) : 267 - 288
  • [25] CATION PERMEABILITY OF THYLAKOID MEMBRANES
    YAKOVLEVA, GA
    MOLOTKOVSKII, YG
    SOVIET PLANT PHYSIOLOGY, 1979, 26 (02): : 226 - 236
  • [26] INACTIVATION OF THYLAKOID MEMBRANES BY LIGHT
    KRAUSE, GH
    BARENYI, B
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1984, 365 (03): : 247 - 248
  • [27] DIFFUSION OF MOLECULES ON BIOLOGICAL-MEMBRANES OF NONPLANAR FORM
    AIZENBUD, B
    GERSHON, ND
    FEDERATION PROCEEDINGS, 1980, 39 (06) : 1990 - 1990
  • [28] Lipid diffusion in the thylakoid membranes of the cyanobacterium Synechococcus sp.:: effect of fatty acid desaturation
    Sarcina, M
    Murata, N
    Tobin, MJ
    Mullineaux, CW
    FEBS LETTERS, 2003, 553 (03): : 295 - 298
  • [29] Electrostatic interactions between anionic phospholipid membranes and polycationic macromolecules: Slaved diffusion revisited
    Shi, Xiaojun
    Smith, Adam W.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [30] DAMAGE OF THYLAKOID MEMBRANES DUE TO FREEZING
    HEBER, U
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1984, 365 (03): : 240 - 241