Quantitative Approximation Results for Complex-Valued Neural Networks

被引:3
|
作者
Caragea, Andrei [1 ]
Lee, Dae Gwan [1 ]
Maly, Johannes [1 ]
Pfander, Goetz [1 ]
Voigtlaender, Felix [2 ]
机构
[1] KU Eichstatt Ingolstadt, Math Geog Fak, Kollegiengebaude 1 Bau B, D-85072 Ingolstadt, Germany
[2] Tech Univ Munich, Dept Math, D-85748 Garching, Germany
来源
关键词
complex-valued neural networks; function approximation; modReLU activation function; MULTILAYER FEEDFORWARD NETWORKS; SMOOTH; BOUNDS;
D O I
10.1137/21M1429540
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Until recently, applications of neural networks in machine learning have almost exclusively relied on real-valued networks. It was recently observed, however, that complex-valued neural networks (CVNNs) exhibit superior performance in applications in which the input is naturally complex -valued, such as MRI fingerprinting. While the mathematical theory of real-valued networks has, by now, reached some level of maturity, this is far from true for complex-valued networks. In this paper, we analyze the expressivity of complex-valued networks by providing explicit quantitative error bounds for approximating Cn functions on compact subsets of Cd by CVNNs that employ the modReLU activation function, given by \sigma(z) = ReLU(|z| -1) sgn(z), which is one of the most popular complex activation functions used in practice. We show that the derived approximation rates are optimal (up to log factors) in the class of modReLU networks with weights of moderate growth.
引用
收藏
页码:553 / 580
页数:28
相关论文
共 50 条
  • [31] An Introduction to Complex-Valued Recurrent Correlation Neural Networks
    Valle, Marcos Eduardo
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3387 - 3394
  • [32] An augmented CRTRL for complex-valued recurrent neural networks
    Goh, Su Lee
    Mandic, Danilo P.
    NEURAL NETWORKS, 2007, 20 (10) : 1061 - 1066
  • [33] Multistability and Multiperiodicity Analysis of Complex-Valued Neural Networks
    Hu, Jin
    Wang, Jun
    ADVANCES IN NEURAL NETWORKS - ISNN 2014, 2014, 8866 : 59 - 68
  • [34] Multistability of complex-valued neural networks with distributed delays
    Gong, Weiqiang
    Liang, Jinling
    Zhang, Congjun
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 : S1 - S14
  • [35] Representation of complex-valued neural networks: A real-valued approach
    Yadav, A
    Mishra, D
    Ray, S
    Yadav, RN
    Kalra, PK
    2005 International Conference on Intelligent Sensing and Information Processing, Proceedings, 2005, : 331 - 335
  • [36] A Structural Optimization Algorithm for Complex-Valued Neural Networks
    Dong, Zhongying
    Huang, He
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1530 - 1535
  • [37] A complex-valued RTRL algorithm for recurrent neural networks
    Goh, SL
    Mandic, DP
    NEURAL COMPUTATION, 2004, 16 (12) : 2699 - 2713
  • [38] Complex-valued function approximation using an improved BP learning algorithm for wavelet neural networks
    Li, Sufang
    Jiang, Mingyan
    Journal of Computational Information Systems, 2014, 10 (18): : 7985 - 7992
  • [39] New results for exponential stability of complex-valued memristive neural networks with variable delays
    Liu, Dan
    Zhu, Song
    Sun, Kaili
    NEUROCOMPUTING, 2018, 275 : 758 - 767
  • [40] Complex-Valued Neural Network and Complex-Valued Backpropagation Learning Algorithm
    Nitta, Tohru
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 152, 2008, 152 : 153 - 220