Study of the Properties of a Hybrid Piezoelectric and Electromagnetic Energy Harvester for a Civil Engineering Low-Frequency Sloshing Environment

被引:6
|
作者
Wu, Nan [1 ]
He, Yuncheng [1 ]
Fu, Jiyang [1 ]
Liao, Peng [1 ]
机构
[1] Guangzhou Univ, Guangzhou Univ Tamkang Univ Joint Res Ctr Engn St, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
energy harvester; piezoelectricity; low frequency; civil engineering;
D O I
10.3390/en14020391
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper a novel hybrid piezoelectric and electromagnetic energy harvester for civil engineering low-frequency sloshing environment is reported. The architecture, fabrication and characterization of the harvester are discussed. The hybrid energy harvester is composed of a permanent magnet, copper coil, and PVDF(polyvinylidene difluoride) piezoelectric film, and the upper U-tube device containing a cylindrical fluid barrier is connected to the foundation support plate by a hinge and spring. The two primary means of energy collection were through the vortex street, which alternately impacted the PVDF piezoelectric film through fluid shedding, and the electromotive force (EMF) induced by changes in the magnetic field position in the conducting coil. Experimentally, the maximum output power of the piezoelectric transformer of the hybrid energy harvester was 2.47 mu W (circuit load 270 k omega; liquid level height 80 mm); and the maximum output power of the electromagnetic generator was 2.72 mu W (circuit load 470 k omega; liquid level height 60 mm). The low-frequency sloshing energy collected by this energy harvester can drive microsensors for civil engineering monitoring.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism
    Han MengDi
    Zhang XiaoSheng
    Liu Wen
    Sun XuMing
    Peng XuHua
    Zhang HaiXia
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (08) : 1835 - 1841
  • [22] A micromachined low-frequency piezoelectric harvester for vibration and wind energy scavenging
    He, Xuefeng
    Shang, Zhengguo
    Cheng, Yaoqing
    Zhu, You
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (12)
  • [23] Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester
    Takei, Ryohei
    Makimoto, Natsumi
    Okada, Hironao
    Itoh, Toshihiro
    Kobayashi, Takeshi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (06)
  • [24] Design and performance analysis of the low-frequency and broadband piezoelectric energy harvester
    Laizhao, J.
    Rui, H.
    Weike, W.
    2017 3RD INTERNATIONAL CONFERENCE ON APPLIED MATERIALS AND MANUFACTURING TECHNOLOGY (ICAMMT 2017), 2017, 242
  • [25] MEMS-based low-frequency piezoelectric vibration energy harvester
    Li, Peng-Wei, 1600, Chinese Academy of Sciences (22):
  • [26] A Piezoelectric Spring-Mass System as a Low-Frequency Energy Harvester
    Hu, Hongping
    Hu, Lin
    Yang, Jiashi
    Wang, Hairen
    Chen, Xuedong
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2013, 60 (04) : 846 - 850
  • [27] Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications
    Pertin, Osor
    Guha, Koushik
    Jaksic, Olga
    Jaksic, Zoran
    Iannacci, Jacopo
    MICROMACHINES, 2022, 13 (09)
  • [28] Wideband piezoelectric energy harvester for low-frequency application with plucking mechanism
    Hiraki, Yasuhiro
    Masuda, Arata
    Ikeda, Naoto
    Katsumura, Hidenori
    Kagata, Hiroshi
    Okumura, Hidenori
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2015, 2015, 9431
  • [29] Improving energy harvesting from low-frequency excitations by a hybrid tri-stable piezoelectric energy harvester
    Man, Dawei
    Zhang, Yu
    Xu, Gaozheng
    Kuang, Xingchen
    Xu, Huaiming
    Tang, Liping
    Han, Tingting
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 76 : 153 - 165
  • [30] A low-frequency hybrid energy harvester with high output performance
    Xia, Y.
    Liu, W.
    Chen, T.
    Yang, Z.
    Wang, P.
    Liu, H.
    Sun, L.
    15TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2015), 2015, 660