PREDICTION OF SURFACE ROUGHNESS OF Al/SiC COMPOSITE MATERIAL WITH ARTIFICIAL NEURAL NETWORKS

被引:0
|
作者
Sahin, Ismail [1 ]
机构
[1] Gazi Univ, Teknol Fak, Endustriyel Tasarim Muh Bolumu, TR-06500 Ankara, Turkey
关键词
Surface roughness; artificial neural networks; composite material; CUTTING PARAMETERS; STEEL;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, surface roughness of Al/SiC composite material depending on the cutting parameters were predicted with high accuracy using approach of artifical neural network. Surface roughness values obtained as experimentally result of machining with TiCN+TiN coated cementide carbide cutting element of Al/SiC composite material are trained in nine different ANN models with feed forward back propogation. The numbers of neuron in network structure of ANN models are 3-5-6-1, 3-6-4-1, 3-6-6-1, 3-4-3-5-1, 3-4-5-3-1, 3-6-2-3-1, 3-7-1, 3-8-1 ve 3-9-1. The values obtained from the ANN training and testing were evaluated by applying the statistical analyses that are widely used in ANN models. In the face of diffuculty of experimental studies and complexity of the analitical expression, as with many studies, this study also showed that ANN is a usable method for predicting the surface roughness value depending on cutting parameters.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 50 条
  • [11] Soft Modeling of WEDM Process in Prediction of Surface Roughness Using Artificial Neural Networks
    Aiyar, H. D. S.
    Chauhan, G.
    Gupta, N.
    [J]. RECENT ADVANCES IN SMART MANUFACTURING AND MATERIALS, ICEM 2020, 2021, : 465 - 474
  • [12] Surface roughness prediction in CNC end milling machining using artificial neural networks
    Chang, Ming-Kun
    Chang, Wen-Jie
    [J]. ICIC Express Letters, Part B: Applications, 2016, 7 (04): : 759 - 764
  • [13] Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy
    Cagan, S. C.
    Aci, M.
    Buldum, B. B.
    Aci, C.
    [J]. BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2019, 67 (04) : 729 - 739
  • [14] Surface roughness prediction using hybrid neural networks
    Jesuthanam, C. P.
    Kumanan, S.
    Asokan, P.
    [J]. MACHINING SCIENCE AND TECHNOLOGY, 2007, 11 (02) : 271 - 286
  • [15] SURFACE ROUGHNESS PREDICTION OF ELECTRO-DISCHARGE MACHINED COMPONENTS USING ARTIFICIAL NEURAL NETWORKS
    Cavaleri, Liborio
    Chatzarakis, George E.
    Di Trapani, Fabio
    Douvika, Maria G.
    Foskolos, Filippos M.
    Fotos, Alkis
    Giovanis, Dimitris G.
    Karypidis, Dimitrios F.
    Livieratos, Spyros
    Roinos, Konstantinos
    Tsaris, Athanasios K.
    Vaxevanidis, Nikolaos M.
    Vougioukas, Emmanuel
    Asteris, Panagiotis G.
    [J]. IRF2016: 5TH INTERNATIONAL CONFERENCE INTEGRITY-RELIABILITY-FAILURE, 2016, : 1301 - 1318
  • [16] Surface roughness prediction in turning using artificial neural network
    Surjya K. Pal
    Debabrata Chakraborty
    [J]. Neural Computing & Applications, 2005, 14 : 319 - 324
  • [17] Surface roughness prediction in turning using artificial neural network
    Pal, SK
    Chakraborty, D
    [J]. NEURAL COMPUTING & APPLICATIONS, 2005, 14 (04): : 319 - 324
  • [18] Prediction of Surface roughness & Material Removal Rate for machining of P20 Steel in CNC milling using Artificial Neural Networks
    Vardhan, M. Vishnu
    Sankaraiah, G.
    Yohan, M.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2018, 5 (09) : 18376 - 18382
  • [19] Artificial neural networks for machining processes surface roughness modeling
    Pontes, Fabricio J.
    Ferreira, Joao R.
    Silva, Messias B.
    Paiva, Anderson P.
    Balestrassi, Pedro Paulo
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2010, 49 (9-12): : 879 - 902
  • [20] Artificial neural networks for machining processes surface roughness modeling
    Fabricio J. Pontes
    João R. Ferreira
    Messias B. Silva
    Anderson P. Paiva
    Pedro Paulo Balestrassi
    [J]. The International Journal of Advanced Manufacturing Technology, 2010, 49 : 879 - 902