A MUSCL method satisfying all the numerical entropy inequalities

被引:43
|
作者
Bouchut, F
Bourdarias, C
Perthame, B
机构
[1] UNIV CHAMBERY, DEPT MATH, F-73011 CHAMBERY, FRANCE
[2] UNIV PARIS 06, ANAL NUMER LAB, F-75252 PARIS 05, FRANCE
[3] CNRS UA 189, F-75252 PARIS 05, FRANCE
关键词
scalar conservation laws; MUSCL method; discrete entropy inequality; kinetic schemes; entropic slope reconstruction;
D O I
10.1090/S0025-5718-96-00752-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider here second-order finite volume methods for one-dimensional scalar conservation laws. We give a method to determine a slope reconstruction satisfying all the exact numerical entropy inequalities. It avoids inhomogeneous slope limitations and, at least, gives a convergence rate of Delta x(1/2). It is obtained by a theory of second-order entropic projections involving values at the nodes of the grid and a variant of error estimates, which also gives new results for the first-order Engquist-Osher scheme.
引用
收藏
页码:1439 / 1461
页数:23
相关论文
共 50 条
  • [1] AN EXAMPLE OF MUSCL METHOD SATISFYING ALL THE NUMERICAL ENTROPY INEQUALITIES
    BOUCHUT, F
    BOURDARIAS, C
    PERTHAME, B
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (06): : 619 - 624
  • [2] An entropy satisfying MUSCL scheme for systems of conservation laws
    Coquel, F
    LeFloch, PG
    [J]. NUMERISCHE MATHEMATIK, 1996, 74 (01) : 1 - 33
  • [3] All inequalities for the relative entropy
    Ibinson, Ben
    Linden, Noah
    Winter, Andreas
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 237 - +
  • [4] All Inequalities for the Relative Entropy
    Ben Ibinson
    Noah Linden
    Andreas Winter
    [J]. Communications in Mathematical Physics, 2007, 269 : 223 - 238
  • [5] All inequalities for the relative entropy
    Ibinson, Ben
    Linden, Noah
    Winter, Andreas
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 269 (01) : 223 - 238
  • [6] On numerical entropy inequalities for a class of relaxed schemes
    Tang, HZ
    Tang, T
    Wang, JH
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2001, 59 (02) : 391 - 399
  • [7] MUSCL TYPE SCHEMES AND DISCRETE ENTROPY CONDITIONS
    N. Zhao(Department of Aerodynamics
    [J]. Journal of Computational Mathematics, 1997, (01) : 72 - 80
  • [8] MUSCL type schemes and discrete entropy conditions
    Zhao, N
    Wu, HM
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (01) : 72 - 80
  • [9] Concentration inequalities using the entropy method
    Boucheron, S
    Lugosi, G
    Massart, P
    [J]. ANNALS OF PROBABILITY, 2003, 31 (03): : 1583 - 1614
  • [10] Typical Werner states satisfying all linear Bell inequalities with dichotomic measurements
    Luo, Ming-Xing
    [J]. PHYSICAL REVIEW A, 2018, 97 (04)