An entropy satisfying MUSCL scheme for systems of conservation laws

被引:19
|
作者
Coquel, F
LeFloch, PG
机构
[1] ECOLE POLYTECH, CTR MATH APPL, F-91128 PALAISEAU, FRANCE
[2] ECOLE POLYTECH, CNRS UA756, F-91128 PALAISEAU, FRANCE
关键词
D O I
10.1007/s002110050205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the high-order numerical approximation of hyperbolic systems of conservation laws, we propose to use as a building principle an entropy diminishing criterion instead of the familiar total variation diminishing criterion introduced by Harten for scalar equations. Based on this new criterion, we derive entropy diminishing projections that ensure, both, the second order of accuracy and all of the classical discrete entropy inequalities. The resulting scheme is a nonlinear version of the classical Van Leer's MUSCL scheme. Strong convergence of this second order, entropy satisfying scheme is proved for systems of two equations. Numerical tests demonstrate the interest of our theory.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条