Convergence Rates for Linear Inverse Problems in the Presence of an Additive Normal Noise

被引:13
|
作者
Hofinger, Andreas [1 ]
Pikkarainen, Hanna K. [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
美国国家科学基金会;
关键词
Convergence rates; Linear inverse problems; Parameter choice rules; Statistical inversion theories; OPERATOR-EQUATIONS;
D O I
10.1080/07362990802558295
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we examine a finite-dimensional linear inverse problem where the measurements are disturbed by an additive normal noise. The problem is solved both in the frequentist and in the Bayesian frameworks. Convergence of the used methods when the noise tends to zero is studied in the Ky Fan metric. The obtained convergence rate results and parameter choice rules are of a similar structure for both approaches.
引用
收藏
页码:240 / 257
页数:18
相关论文
共 50 条
  • [1] CONVERGENCE RATES FOR INVERSE PROBLEMS WITH IMPULSIVE NOISE
    Hohage, Thorsten
    Werner, Frank
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) : 1203 - 1221
  • [2] ON THE LIFTING OF DETERMINISTIC CONVERGENCE RATES FOR INVERSE PROBLEMS WITH STOCHASTIC NOISE
    Gerth, Daniel
    Hofinger, Andreas
    Ramlau, Ronny
    INVERSE PROBLEMS AND IMAGING, 2017, 11 (04) : 663 - 687
  • [3] On the Asymptotical Regularization for Linear Inverse Problems in Presence of White Noise
    Lu, Shuai
    Niu, Pingping
    Werner, Frank
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (01): : 1 - 28
  • [4] Generalized Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces
    Andreev, Roman
    Elbau, Peter
    de Hoop, Maarten V.
    Qiu, Lingyun
    Scherzer, Otmar
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (05) : 549 - 566
  • [5] Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces
    Albani, V.
    Elbau, P.
    de Hoop, M. V.
    Scherzer, O.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (05) : 521 - 540
  • [6] CONVERGENCE RATES FOR EXPONENTIALLY ILL-POSED INVERSE PROBLEMS WITH IMPULSIVE NOISE
    Koenig, Claudia
    Werner, Frank
    Hohage, Thorsten
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) : 341 - 360
  • [7] SOLUTION OF LINEAR GEOPHYSICAL PROBLEMS IN PRESENCE OF MULTIPLICATIVE-ADDITIVE NOISE
    STRAKHOV, VN
    DOKLADY AKADEMII NAUK SSSR, 1991, 319 (04): : 845 - 848
  • [8] NORMAL CONVERGENCE OF MULTIDIMENSIONAL SHOT NOISE AND RATES OF THIS CONVERGENCE
    HEINRICH, L
    SCHMIDT, V
    ADVANCES IN APPLIED PROBABILITY, 1985, 17 (04) : 709 - 730
  • [9] INVERSE SPECTRAL PROBLEMS IN PRESENCE OF NOISE
    GRUNBAUM, FA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (06): : A683 - A683
  • [10] Sampling linear inverse problems with noise
    Stefanov, Plamen
    Tindel, Samy
    ASYMPTOTIC ANALYSIS, 2023, 132 (3-4) : 331 - 382