On Fourier series of Jacobi-Sobolev orthogonal polynomials

被引:9
|
作者
Marcellán, F
Osilenker, BP
Rocha, IA
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
[2] Moscow State Civil Engn Univ, Dept Math, Moscow, Russia
[3] Univ Politecn Madrid, Dept Matemat Aplicada, EUIT Telecommun, Madrid 28031, Spain
关键词
orthogonal polynomials; Sobolev inner product; Fourier series;
D O I
10.1080/1025583021000022450
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a be the Jacobi measure on the interval [-1,1] and introduce the discrete Sobolev-type inner product <f, g> = integral(-1)(1)f(x)g(x)dmu(x) + Mf(c)g(c) + Nf'(c)g'(c) where c is an element of (1, infinity) and M, N are non negative constants such that M + N > 0. The main purpose of this paper is to study the behaviour of the Fourier series in terms of the polynomials associated to the Sobolev inner product. For an appropriate function f, we prove here that the Fourier-Sobolev series converges to f on the interval (-1, 1) as well as to f (c) and the derivative of the series converges to f(c). The tern appropriate means here, in general, the same as we need for a function f (x) in order to have convergence for the series of f (x) associated to the standard inner product given by the measure p. No additional conditions are needed.
引用
收藏
页码:673 / 699
页数:27
相关论文
共 50 条
  • [1] Fourier series of Jacobi-Sobolev polynomials
    Ciaurri, Oscar
    Minguez Ceniceros, Judit
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (04) : 334 - 346
  • [2] Analytic properties of nondiagonal Jacobi-Sobolev orthogonal polynomials
    Moreno-Balcázar, JJ
    Martínez-Finkelshtein, A
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 393 - 401
  • [3] Differential equations for discrete Jacobi-Sobolev orthogonal polynomials
    Duran, Antonio J.
    de la Iglesia, Manuel D.
    [J]. JOURNAL OF SPECTRAL THEORY, 2018, 8 (01) : 191 - 234
  • [4] Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
    Dimitrov, Dimitar K.
    Mello, Mirela V.
    Rafaeli, Fernando R.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2010, 60 (03) : 263 - 276
  • [5] Eigenvalue Problem for Discrete Jacobi-Sobolev Orthogonal Polynomials
    Manas-Manas, Juan F.
    Moreno-Balcazar, Juan J.
    Wellman, Richard
    [J]. MATHEMATICS, 2020, 8 (02)
  • [6] A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product
    BujarXh Fejzullahu
    Francisco Marcellán
    [J]. Journal of Inequalities and Applications, 2010
  • [7] Jacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality
    Fejzullahu, B. Xh.
    Marcellan, F.
    Moreno-Balcazar, J. J.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 78 - 93
  • [8] On Fourier series of a discrete Jacobi-Sobolev inner product
    Marcellán, F
    Osilenker, BP
    Rocha, IA
    [J]. JOURNAL OF APPROXIMATION THEORY, 2002, 117 (01) : 1 - 22
  • [9] A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product
    Fejzullahu, Bujar Xh
    Marcellan, Francisco
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [10] Asymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials
    Manas-Manas, Juan F.
    Marcellan, Francisco
    Moreno-Balcazar, Juan J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 300 : 341 - 353