Fourier series of Jacobi-Sobolev polynomials

被引:11
|
作者
Ciaurri, Oscar [1 ]
Minguez Ceniceros, Judit [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Computac, Logrono, Spain
关键词
Sobolev-type inner product; Sobolev polynomials; Jacobi polynomials; partial sum operator; INEQUALITIES; NORM;
D O I
10.1080/10652469.2018.1560279
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {q(n)((alpha,beta,m)) (chi)}(n >= 0) be the orthonormal polynomials with respect to the Sobolev- type inner product (f, g)(alpha,beta,m) = Sigma(m)(k=0) integral(1)(-1) f ((k))(x)(g(k))(x) dwa(alpha+k), beta+k(x), a, beta > -1, m >= 1, where dwa, b(x) = (1 -x) a(1 + x) b dx. We obtain necessary and sufficient conditions for the uniform boundedness of the partial sum operators related to this sequence of polynomials in the Sobolev space W-alpha,beta(p,m) As a consequence, we deduce the convergence of such partial sums in the norm of W-alpha,beta(p,m).
引用
收藏
页码:334 / 346
页数:13
相关论文
共 50 条
  • [1] On Fourier series of Jacobi-Sobolev orthogonal polynomials
    Marcellán, F
    Osilenker, BP
    Rocha, IA
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (05) : 673 - 699
  • [2] On Fourier series of a discrete Jacobi-Sobolev inner product
    Marcellán, F
    Osilenker, BP
    Rocha, IA
    [J]. JOURNAL OF APPROXIMATION THEORY, 2002, 117 (01) : 1 - 22
  • [3] On convergence of Fourier series in discrete Jacobi-Sobolev spaces
    Ciaurri, O.
    Ceniceros, J. Minguez
    Rodriguez, J. M.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (09) : 703 - 720
  • [4] Discrete-Continuous Jacobi-Sobolev Spaces and Fourier Series
    Diaz-Gonzalez, Abel
    Marcellan, Francisco
    Pijeira-Cabrera, Hector
    Urbina, Wilfredo
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) : 571 - 598
  • [5] Differential Properties of Jacobi-Sobolev Polynomials and Electrostatic Interpretation
    Pijeira-Cabrera, Hector
    Quintero-Roba, Javier
    Toribio-Milane, Juan
    [J]. MATHEMATICS, 2023, 11 (15)
  • [6] Analytic properties of nondiagonal Jacobi-Sobolev orthogonal polynomials
    Moreno-Balcázar, JJ
    Martínez-Finkelshtein, A
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 393 - 401
  • [7] Differential equations for discrete Jacobi-Sobolev orthogonal polynomials
    Duran, Antonio J.
    de la Iglesia, Manuel D.
    [J]. JOURNAL OF SPECTRAL THEORY, 2018, 8 (01) : 191 - 234
  • [8] Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
    Dimitrov, Dimitar K.
    Mello, Mirela V.
    Rafaeli, Fernando R.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2010, 60 (03) : 263 - 276
  • [9] A Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Nondiscrete Jacobi-Sobolev Inner Product
    BujarXh Fejzullahu
    Francisco Marcellán
    [J]. Journal of Inequalities and Applications, 2010
  • [10] Eigenvalue Problem for Discrete Jacobi-Sobolev Orthogonal Polynomials
    Manas-Manas, Juan F.
    Moreno-Balcazar, Juan J.
    Wellman, Richard
    [J]. MATHEMATICS, 2020, 8 (02)