THERMAL CHARACTERIZATION OF HIGH TEMPERATURE INORGANIC PHASE CHANGE MATERIALS FOR THERMAL ENERGY STORAGE APPLICATIONS

被引:0
|
作者
Trahan, Jamie [1 ]
Kuravi, Sarada [1 ]
Goswami, D. Yogi [1 ]
Rahman, Muhammad [1 ]
Stefanakos, Elias [1 ]
机构
[1] Univ S Florida, Clean Energy Res Ctr, Tampa, FL 33620 USA
关键词
high temperature phase change material (PCM); molten salts; thermal energy storage; melting point; latent heat; heat capacity; chloride eutectic; carbonate eutectic; TROUGH POWER-PLANTS; KCL;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As the importance of latent heat thermal energy storage increases for utility scale concentrating solar power (CSP) plants, there lies a need to characterize the thermal properties and melting behavior of phase change materials (PCMs) that are low in cost and high in energy density. In this paper, the results of an investigation of the melting temperature and latent heat of two binary high temperature salt eutectics are presented. Melting point and latent heat are analyzed for a chloride eutectic and carbonate eutectic using simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analsysis (TGA). High purity materials were used and the handling procedure was carefully controlled to accommodate the hygroscopic nature of the chloride eutectic. The DSC analysis gives the values of thermal properties of the eutectics, which are compared with the calculated (expected/published) values. The thermal stability of the eutectics is also examined by repeated thermal cycling in a DSC and is reported in the paper along with a cost analysis of the salt materials.
引用
下载
收藏
页码:621 / 628
页数:8
相关论文
共 50 条
  • [21] Thermal performance characterization of a thermal energy storage tank with various phase change materials
    Hathal M.M.
    Al-Jadir T.
    Al-Sheikh F.
    Edan M.S.
    Haider M.J.
    Rsool R.A.
    Haider A.J.
    Badawy T.
    Al jubori A.M.
    International Journal of Thermofluids, 2023, 18
  • [22] Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage
    Li, Wan-Wan
    Cheng, Wen-Long
    Xie, Biao
    Liu, Na
    Zhang, Li-Song
    ENERGY CONVERSION AND MANAGEMENT, 2017, 149 : 1 - 12
  • [23] Advances in phase change materials and nanomaterials for applications in thermal energy storage
    Kumar, Rahul
    Thakur, Amit Kumar
    Gupta, Lovi Raj
    Gehlot, Anita
    Sikarwar, Vineet Singh
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (05) : 6649 - 6677
  • [24] Thermal energy storage using phase change materials: Fundamentals and applications
    Fleischer, Amy S.
    SpringerBriefs in Applied Sciences and Technology, 2015, 0 (9783319209210):
  • [25] An overview: Applications of thermal energy storage using phase change materials
    Ali, Shahid
    Deshmukh, S. P.
    MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 1231 - 1237
  • [26] Phase Change Materials for Applications in Building Thermal Energy Storage (Review)
    Habib, Md Ahsan
    Rahman, Muhammad Mustafizur
    THERMAL ENGINEERING, 2024, 71 (08) : 649 - 663
  • [27] Advances in phase change materials and nanomaterials for applications in thermal energy storage
    Rahul Kumar
    Amit Kumar Thakur
    Lovi Raj Gupta
    Anita Gehlot
    Vineet Singh Sikarwar
    Environmental Science and Pollution Research, 2024, 31 : 6649 - 6677
  • [28] Review on phase change materials for cold thermal energy storage applications
    Nie, Binjian
    Palacios, Anabel
    Zou, Boyang
    Liu, Jiaxu
    Zhang, Tongtong
    Li, Yunren
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 134
  • [29] Phase change materials for thermal energy storage applications in greenhouses: A review
    Nishad, Safna
    Krupa, Igor
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [30] Phase change materials for thermal energy storage
    Pielichowska, Kinga
    Pielichowski, Krzysztof
    PROGRESS IN MATERIALS SCIENCE, 2014, 65 : 67 - 123