Maximum principle for optimal control of non-well posed elliptic differential equations

被引:10
|
作者
Wang, GS [1 ]
Wang, LJ [1 ]
机构
[1] Huazhong Normal Univ, Dept Math, Wuhan 480079, Hubei, Peoples R China
关键词
optimal control; non-well posed equation; state constraint;
D O I
10.1016/S0362-546X(01)00897-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
(Edited Abstract)
引用
收藏
页码:41 / 67
页数:27
相关论文
共 50 条
  • [21] THE MAXIMUM PRINCIPLE FOR VISCOSITY SOLUTIONS OF ELLIPTIC DIFFERENTIAL FUNCTIONAL EQUATIONS
    Karpowicz, Adrian
    [J]. OPUSCULA MATHEMATICA, 2013, 33 (01) : 99 - 105
  • [22] MAXIMUM PRINCIPLE IN OPTIMAL CONTROL OF SINGULAR ORDINARY DIFFERENTIAL EQUATIONS IN HILBERT SPACES
    Alshahrani, M. M.
    El-Gebeily, M. A.
    Mordukhovich, B. S.
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (2-3): : 219 - 233
  • [23] Boundary control of non-well-posed elliptic equations with nonlinear Neumann boundary conditions
    Luan, Shu
    Gao, Hang
    Xu, Peng
    [J]. OPTIMIZATION LETTERS, 2012, 6 (04) : 695 - 708
  • [24] Boundary control of non-well-posed elliptic equations with nonlinear Neumann boundary conditions
    Shu Luan
    Hang Gao
    Peng Xu
    [J]. Optimization Letters, 2012, 6 : 695 - 708
  • [25] Stochastic maximum principle for optimal control of partial differential equations driven by white noise
    Fuhrman, Marco
    Hu, Ying
    Tessitore, Gianmario
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2018, 6 (02): : 255 - 285
  • [26] The first variation and Pontryagin’s maximum principle in optimal control for partial differential equations
    M. I. Sumin
    [J]. Computational Mathematics and Mathematical Physics, 2009, 49 : 958 - 978
  • [27] Stochastic maximum principle for optimal control of partial differential equations driven by white noise
    Marco Fuhrman
    Ying Hu
    Gianmario Tessitore
    [J]. Stochastics and Partial Differential Equations: Analysis and Computations, 2018, 6 : 255 - 285
  • [28] The first variation and Pontryagin's maximum principle in optimal control for partial differential equations
    Sumin, M. I.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (06) : 958 - 978
  • [29] The maximum principle for the optimal control of some linear switching controlled ordinary differential equations
    Zheng, Guojie
    Li, Juntao
    Wang, Xiaoyu
    [J]. PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 3158 - 3161
  • [30] A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL OF STOCHASTIC EVOLUTION EQUATIONS
    Du, Kai
    Meng, Qingxin
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (06) : 4343 - 4362