INFERENCE FOR CONDITIONAL VALUE-AT-RISK OF A PREDICTIVE REGRESSION

被引:9
|
作者
He, Yi [1 ]
Hou, Yanxi [2 ]
Peng, Liang [3 ]
Shen, Haipeng [3 ]
机构
[1] Univ Amsterdam, Amsterdam Sch Econ, Amsterdam, Netherlands
[2] Fudan Univ, Sch Data Sci, Shanghai, Peoples R China
[3] Georgia State Univ, Dept Risk Management & Insurance, Atlanta, GA 30303 USA
来源
ANNALS OF STATISTICS | 2020年 / 48卷 / 06期
基金
中国国家自然科学基金;
关键词
Conditional risk measures; empirical likelihood; least squares estimation; interval estimation; quantile regression; risk management; value-at-risk; EMPIRICAL LIKELIHOOD METHOD; MODELS; TAIL; RATIO;
D O I
10.1214/19-AOS1937
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Conditional value-at-risk is a popular risk measure in risk management. We study the inference problem of conditional value-at-risk under a linear predictive regression model. We derive the asymptotic distribution of the least squares estimator for the conditional value-at-risk. Our results relax the model assumptions made in (Oper. Res. 60 (2012) 739-756) and correct their mistake in the asymptotic variance expression. We show that the asymptotic variance depends on the quantile density function of the unobserved error and whether the model has a predictor with infinite variance, which makes it challenging to actually quantify the uncertainty of the conditional risk measure. To make the inference feasible, we then propose a smooth empirical likelihood based method for constructing a confidence interval for the conditional value-at-risk based on either independent errors or GARCH errors. Our approach not only bypasses the challenge of directly estimating the asymptotic variance but also does not need to know whether there exists an infinite variance predictor in the predictive model. Furthermore, we apply the same idea to the quantile regression method, which allows infinite variance predictors and generalizes the parameter estimation in (Econometric Theory 22 (2006) 173-205) to conditional value-at-risk in the Supplementary Material. We demonstrate the finite sample performance of the derived confidence intervals through numerical studies before applying them to real data.
引用
收藏
页码:3442 / 3464
页数:23
相关论文
共 50 条
  • [21] Credit risk optimization with Conditional Value-at-Risk criterion
    Fredrik Andersson
    Helmut Mausser
    Dan Rosen
    Stanislav Uryasev
    [J]. Mathematical Programming, 2001, 89 : 273 - 291
  • [22] Dependent conditional value-at-risk for aggregate risk models
    Josaphat, Bony Parulian
    Syuhada, Khreshna
    [J]. HELIYON, 2021, 7 (07)
  • [23] Credit risk optimization with Conditional Value-at-Risk criterion
    Andersson, F
    Mausser, H
    Rosen, D
    Uryasev, S
    [J]. MATHEMATICAL PROGRAMMING, 2001, 89 (02) : 273 - 291
  • [24] On multivariate extensions of the conditional Value-at-Risk measure
    Di Bernardino, E.
    Fernandez-Ponce, J. M.
    Palacios-Rodriguez, F.
    Rodriguez-Grinolo, M. R.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2015, 61 : 1 - 16
  • [25] Suboptimality in portfolio conditional value-at-risk optimization
    Jakobsons, Edgars
    [J]. JOURNAL OF RISK, 2016, 18 (04): : 1 - 23
  • [26] Conditional Value-at-Risk: Structure and complexity of equilibria
    Mavronicolas, Marios
    Monien, Burkhard
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 807 : 266 - 283
  • [27] Efficiently Backtesting Conditional Value-at-Risk and Conditional Expected Shortfall
    Su, Qihui
    Qin, Zhongling
    Peng, Liang
    Qin, Gengsheng
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (536) : 2041 - 2052
  • [28] Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo
    Hong, L. Jeff
    Hu, Zhaolin
    Zhang, Liwei
    [J]. INFORMS JOURNAL ON COMPUTING, 2014, 26 (02) : 385 - 400
  • [29] Robust Conditional Variance and Value-at-Risk Estimation
    Dupuis, Debbie J.
    Papageorgiou, Nicolas
    Remillard, Bruno
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2015, 13 (04) : 896 - 921
  • [30] Optimizing conditional value-at-risk in dynamic pricing
    Jochen Gönsch
    Michael Hassler
    Rouven Schur
    [J]. OR Spectrum, 2018, 40 : 711 - 750