Collective Excitation and Quantum Depletion of a Bose-Einstein Condensate in a Periodic Array of Quantum Wells

被引:4
|
作者
Xue Rui [1 ,2 ,3 ,4 ]
Li Wei-Dong [5 ,6 ]
Liang Zhao-Xin [7 ]
机构
[1] North Univ China, Key Lab Instrumentat Sci & Dynam Measurement, Taiyuan 030051, Peoples R China
[2] North Univ China, Natl Key Lab Elect Measurement Technol, Taiyuan 030051, Peoples R China
[3] North Univ China, Dept Phys, Taiyuan 030051, Peoples R China
[4] North Univ China, Engn Technol Res Ctr Shanxi Prov Optoelect Inform, Taiyuan 030051, Peoples R China
[5] Shanxi Univ, Inst Theoret Phys, Taiyuan 030006, Peoples R China
[6] Shanxi Univ, Dept Phys, Taiyuan 030006, Peoples R China
[7] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL LATTICES; MOTT INSULATOR; GASES;
D O I
10.1088/0256-307X/31/3/030302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the help of a set of exact closed-form solutions to the stationary Gross-Pitaevskii (GP) equation, we calculate the collective excitation and quantum depletion of a weakly interacting Bose gas in the presence of a periodic array of quantum wells. The excitation spectrum (Bogoliubov spectrum) is obtained from the solution of the linearized time-dependent GP equation, which develops energy bands (h) over barw(j)(p) periodic in quasi-momentum space. Moreover, we calculate the excitation strengths Z(j)(p) relative to the density operator and then the dynamic structure factor S(p,w). Accordingly, the analytical expressions of quantum depletion of the system are obtained. We find that the quantum depletion is enhanced when the interatomic interactions become larger and the potential is sufficiently deep. The conditions for the possible experimental realization of our scenario are also proposed.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Detecting quantum backflow by the density of a Bose-Einstein condensate
    Palmero, M.
    Torrontegui, E.
    Muga, J. G.
    Modugno, M.
    [J]. PHYSICAL REVIEW A, 2013, 87 (05):
  • [42] Quantum pump for countercirculation in a spinor Bose-Einstein condensate
    Xu, Z. F.
    Zhang, P.
    Lue, R.
    You, L.
    [J]. PHYSICAL REVIEW A, 2010, 81 (05):
  • [43] Quantum Entanglement in Two Mode Bose-Einstein Condensate
    Mao, Ying-Ling
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (09) : 2748 - 2754
  • [44] Quantum Enhancement of the Index of Refraction in a Bose-Einstein Condensate
    Bons, P. C.
    de Haas, R.
    de Jong, D.
    Groot, A.
    van der Straten, P.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (17)
  • [45] Quantum phase diagram for homogeneous Bose-Einstein condensate
    Kleinert, H
    Schmidt, S
    Pelster, A
    [J]. ANNALEN DER PHYSIK, 2005, 14 (04) : 214 - 230
  • [46] Quantum instability of a Bose-Einstein condensate with attractive interaction
    Berman, GP
    Smerzi, A
    Bishop, AR
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (12) : 4
  • [47] Quantum effects on curve crossing in a Bose-Einstein condensate
    Yurovsky, VA
    Ben-Reuven, A
    Julienne, PS
    [J]. PHYSICAL REVIEW A, 2002, 65 (04) : 436071 - 436075
  • [48] Quantum entanglement via superradiance of a Bose-Einstein condensate
    Tasgin, M. E.
    Oktel, M. O.
    You, L.
    Mustecaplioglu, O. E.
    [J]. LASER PHYSICS, 2010, 20 (03) : 700 - 708
  • [49] Quantum walk of a Bose-Einstein condensate in the Brillouin zone
    Alberti, Andrea
    Wimberger, Sandro
    [J]. PHYSICAL REVIEW A, 2017, 96 (02)
  • [50] Quantum fluctuations of a vortex in a dilute Bose-Einstein condensate
    Dziarmaga, J
    Meisner, J
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (23) : 4211 - 4219