Certain Inequalities Involving the Fractional q-Integral Operators

被引:18
|
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Agarwal, Praveen [4 ]
机构
[1] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21589, Saudi Arabia
[2] Cankaya Univ, Dept Math & Comp Sci, TR-06810 Ankara, Turkey
[3] Inst Space Sci, Bucharest 76900, Romania
[4] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
关键词
D O I
10.1155/2014/371274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some inequalities involving Saigo fractional q-integral operator in the theory of quantum calculus by using the two parameters of deformation, q(1) and q(2), whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville and Kober fractional q-integral operators, respectively. Furthermore, we also consider their relevance with other related known results.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] CERTAIN FRACTIONAL q-INTEGRAL FORMULAS FOR THE GENERALIZED BASIC HYPERGEOMETRIC FUNCTIONS OF TWO VARIABLES
    Yadav, R. K.
    Kalla, S. L.
    Purohit, S. D.
    Vyas, V. K.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2010, 1 (01): : 30 - 38
  • [42] FRACTIONAL Q-INTEGRAL OPERATORS ASSOCIATED WITH A BASIC ANALOG OF SRIVASTAVA-DAOUST FUNCTION
    SAXENA, RK
    MODI, GC
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1985, 16 (05): : 491 - 497
  • [43] Certain Gruss type inequalities involving the generalized fractional integral operator
    Wang, Guotao
    Agarwal, Praveen
    Chand, Mehar
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [44] Certain Chebyshev type inequalities involving the generalized fractional integral operator
    Liu, Zhen
    Yang, Wengui
    Agarwal, Praveen
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (06) : 999 - 1014
  • [45] On Functional Equation Mixed q-Fractional Integral and Fractional Derivative with q-Integral Condition
    Ahmed, Reda Gamal
    El-Sayed, Ahmed M. A.
    Alrashdi, Muhanna Ali H.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [46] Gruss Type Inequalities Involving New Conformable Fractional Integral Operators
    Set, Erhan
    Mumcu, Ilker
    Ozdemir, M. Emin
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [47] Certain inequalities via generalized proportional Hadamard fractional integral operators
    Gauhar Rahman
    Thabet Abdeljawad
    Fahd Jarad
    Aftab Khan
    Kottakkaran Sooppy Nisar
    Advances in Difference Equations, 2019
  • [48] On the multi-parameterized inequalities involving the tempered fractional integral operators
    Tan, Pinzheng
    Du, Tingsong
    FILOMAT, 2023, 37 (15) : 4919 - 4941
  • [49] Chebyshev type inequalities involving extended generalized fractional integral operators
    Set, Erhan
    Ozdemir, M. Emin
    Demirbas, Sevdenur
    AIMS MATHEMATICS, 2020, 5 (04): : 3573 - 3583
  • [50] CHEBYSHEV TYPE INEQUALITIES INVOLVING GENERALIZED KATUGAMPOLA FRACTIONAL INTEGRAL OPERATORS
    Set, Erhan
    Choi, Junesang
    Mumcu, Ilker
    TAMKANG JOURNAL OF MATHEMATICS, 2019, 50 (04): : 381 - 390