Perturbation theory for Markov chains via Wasserstein distance

被引:63
|
作者
Rudolf, Daniel [1 ]
Schweizer, Nikolaus [2 ]
机构
[1] Univ Gottingen, Inst Math Stochast, Goldschmidtstr 7, D-37077 Gottingen, Germany
[2] Tilburg Univ, Dept Econometr & OR, POB 90153, NL-5000 LE Tilburg, Netherlands
关键词
big data; Markov chains; MCMC; perturbations; Wasserstein distance; GEOMETRIC ERGODICITY; QUANTITATIVE BOUNDS; ERROR-BOUNDS; CONVERGENCE; HASTINGS; STABILITY; ALGORITHMS; RATES;
D O I
10.3150/17-BEJ938
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Perturbation theory for Markov chains addresses the question of how small differences in the transition probabilities of Markov chains are reflected in differences between their distributions. We prove powerful and flexible bounds on the distance of the nth step distributions of two Markov chains when one of them satisfies a Wasserstein ergodicity condition. Our work is motivated by the recent interest in approximate Markov chain Monte Carlo (MCMC) methods in the analysis of big data sets. By using an approach based on Lyapunov functions, we provide estimates for geometrically ergodic Markov chains under weak assumptions. In an autoregressive model, our bounds cannot be improved in general. We illustrate our theory by showing quantitative estimates for approximate versions of two prominent MCMC algorithms, the Metropolis-Hastings and stochastic Langevin algorithms.
引用
收藏
页码:2610 / 2639
页数:30
相关论文
共 50 条
  • [41] Perturbation analysis for continuous-time Markov chains
    YuanYuan Liu
    Science China Mathematics, 2015, 58 : 2633 - 2642
  • [42] Strong stability and perturbation bounds for discrete Markov chains
    Rabta, Boualem
    Aiessani, Djamil
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 1921 - 1927
  • [43] ON THE PERTURBATION OF MARKOV-CHAINS WITH NEARLY TRANSIENT STATES
    STEWART, GW
    NUMERISCHE MATHEMATIK, 1993, 65 (01) : 135 - 141
  • [44] Perturbation Bounds for Markov Chains with General State Space
    Rabta B.
    Aïssani D.
    Journal of Mathematical Sciences, 2018, 228 (5) : 510 - 521
  • [45] Time Delay Estimation Via Wasserstein Distance Minimization
    Nichols, Jonathan M.
    Hutchinson, Meredith N.
    Menkart, Nicole
    Cranch, Geoff A.
    Rohde, Gustavo Kunde
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (06) : 908 - 912
  • [46] Variational perturbation theory for Markov processes
    Kleinert, H
    Pelster, A
    Putz, MV
    PHYSICAL REVIEW E, 2002, 65 (06): : 1 - 066128
  • [47] Contraction in the Wasserstein metric for some Markov chains, and applications to the dynamics of expanding maps
    Kloeckner, Benoit R.
    Lopes, Artur O.
    Stadlbauer, Manuel
    NONLINEARITY, 2015, 28 (11) : 4117 - 4137
  • [48] Optimal Kullback-Leibler Aggregation via Spectral Theory of Markov Chains
    Deng, Kun
    Mehta, Prashant G.
    Meyn, Sean P.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (12) : 2787 - 2802
  • [49] A Tutorial on the Spectral Theory of Markov Chains
    Seabrook, Eddie
    Wiskott, Laurenz
    NEURAL COMPUTATION, 2023, 35 (11) : 1713 - 1796
  • [50] A FLUCTUATION THEORY FOR MARKOV-CHAINS
    KULKARNI, VG
    PRABHU, NU
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 16 (01) : 39 - 54