Wavelet Network based Online Sequential Extreme Learning Machine for Dynamic System Modeling

被引:0
|
作者
Salih, Dhiadeen M. [1 ]
Noor, S. B. Mohd [1 ]
Marhaban, M. H. [1 ]
Ahmad, R. M. K. Raja [1 ]
机构
[1] Univ Putra Malaysia, Dept Elect & Elect Engn, Serdang 43400, Selangor, Malaysia
关键词
Neural Network (NN); Extreme Learning Machine (ELM); Nonlinear ARX Model; Waveleons; Dilation; Translation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wavelet network (WN) has been introduced in many applications of dynamic systems modeling with different learning algorithms. In this paper an online sequential extreme learning machine (OSELM) algorithm adopted as training procedure for wavelet network based on serial-parallel nonlinear autoregressive exogenous (NARX) model. The proposed model used as system identification for nonlinear dynamic systems. The main advantage of OSELM over conventional algorithms is the ability of updating network weights sequentially through data sample-by-sample in a single learning step. This attains good performance at extremely fast learning. The initial kernel parameters of WN played a big role to ensure fast and better learning performance. Simulation of the proposed scheme applied to nonlinear dynamic systems validates that WN-OSELM is superior in terms of identification accuracy and fast learning ability compared to NN-OSELM.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A Survey of Online Sequential Extreme Learning Machine
    Zhang, Senyue
    Tan, Wenan
    Li, Yibo
    2018 5TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2018, : 45 - 50
  • [22] Network Traffic Prediction Using Online-Sequential Extreme Learning Machine
    Rau, Francisco
    Soto, Ismael
    Adasme, Pablo
    Zabala-Blanco, David
    Azurdia-Meza, Cesar A.
    2021 THIRD SOUTH AMERICAN COLLOQUIUM ON VISIBLE LIGHT COMMUNICATIONS (SACVLC 2021), 2021, : 13 - 18
  • [23] Dynamic Load Modeling based on Extreme Learning Machine
    Liu, Zhonghui
    Wang, Zhenshu
    Su, Meihua
    MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS, PTS 1 AND 2, 2012, 195-196 : 1043 - +
  • [24] Pathological Brain Detection Based on Online Sequential Extreme Learning Machine
    Lu, Siyuan
    Wang, Hainan
    Wu, Xueyan
    Wang, Shuihua
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), VOL 1, 2016, : 219 - 223
  • [25] Parallel ensemble of online sequential extreme learning machine based on MapReduce
    Huang, Shan
    Wang, Botao
    Qiu, Junhao
    Yao, Jitao
    Wang, Guoren
    Yu, Ge
    NEUROCOMPUTING, 2016, 174 : 352 - 367
  • [26] An Online Rapid Mesh Segmentation Method Based on an Online Sequential Extreme Learning Machine
    Zhao, Feiyu
    Sheng, Buyun
    Yin, Xiyan
    Wang, Hui
    Lu, Xincheng
    Zhao, Yuncheng
    IEEE ACCESS, 2019, 7 : 109094 - 109110
  • [27] An online sequential learning algorithm for regularized Extreme Learning Machine
    Shao, Zhifei
    Er, Meng Joo
    NEUROCOMPUTING, 2016, 173 : 778 - 788
  • [28] An incremental extreme learning machine for online sequential learning problems
    Guo, Lu
    Hao, Jing-hua
    Liu, Min
    NEUROCOMPUTING, 2014, 128 : 50 - 58
  • [29] Online sequential extreme learning machine in nonstationary environments
    Ye, Yibin
    Squartini, Stefano
    Piazza, Francesco
    NEUROCOMPUTING, 2013, 116 : 94 - 101
  • [30] A Constructive Enhancement for Online Sequential Extreme Learning Machine
    Lan, Yuan
    Soh, Yeng Chai
    Huang, Guang-Bin
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 208 - 213