Quantum exchange algebra and locality in Liouville theory

被引:4
|
作者
Fujiwara, T [1 ]
Igarashi, H [1 ]
Takimoto, Y [1 ]
机构
[1] IBARAKI UNIV,GRAD SCH SCI & ENGN,MITO,IBARAKI 310,JAPAN
关键词
Liouville theory; exchange algebra; quantum group; quantum deformation;
D O I
10.1016/S0370-2693(96)01464-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Exact operator solution for quantum Liouville theory is investigated based on the canonical free field. Locality, the field equation and the canonical commutation relations are examined based on the exchange algebra hidden in the theory. The exact solution proposed by Otto and Weigt is shown to be correct to all order in the cosmological constant.
引用
收藏
页码:78 / 86
页数:9
相关论文
共 50 条
  • [21] ON THE LOCALITY IDEAL IN THE ALGEBRA OF TEST FUNCTIONS FOR QUANTUM-FIELDS
    YNGVASON, J
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (05) : 1063 - 1081
  • [22] NOTES ON QUANTUM LIOUVILLE THEORY AND QUANTUM-GRAVITY
    SEIBERG, N
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1990, (102): : 319 - 349
  • [23] Quantum exchange algebra and exact operator solution of A2-Toda field theory
    Takimoto, Y
    Igarashi, H
    Kurokawa, H
    Fujiwara, T
    [J]. NUCLEAR PHYSICS B, 1999, 543 (03) : 615 - 651
  • [24] LOCALITY PROBLEM FOR THE LIOUVILLE FIELD
    BALOG, J
    PALLA, L
    [J]. PHYSICS LETTERS B, 1992, 274 (3-4) : 323 - 330
  • [25] Locality and General Vacua in Quantum Field Theory
    Colosi, Daniele
    Oeckl, Robert
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
  • [26] Observers and Locality in Everett Quantum Field Theory
    Mark A. Rubin
    [J]. Foundations of Physics, 2011, 41 : 1236 - 1262
  • [27] Quantum Liouville theory on the pseudosphere with heavy charges
    Menotti, P
    Tonni, E
    [J]. PHYSICS LETTERS B, 2006, 633 (2-3) : 404 - 408
  • [28] Classical geometry from the quantum Liouville theory
    Hadasz, L
    Jaskólski, Z
    Piatek, M
    [J]. NUCLEAR PHYSICS B, 2005, 724 (03) : 529 - 554
  • [29] Locality in the Everett Interpretation of Quantum Field Theory
    Mark A. Rubin
    [J]. Foundations of Physics, 2002, 32 : 1495 - 1523
  • [30] Quantum gravity from timelike Liouville theory
    Teresa Bautista
    Atish Dabholkar
    Harold Erbin
    [J]. Journal of High Energy Physics, 2019