Reconstructing the base field from imaginary multiplicative chaos

被引:3
|
作者
Aru, Juhan [1 ]
Junnila, Janne [1 ]
机构
[1] Ecole Polytech Fed Lausanne, EPFL SB MATH, Inst Math, CH-1015 Lausanne, Switzerland
关键词
60G15; 60G20; 60G57; 60G60 (primary); 82B21 (secondary);
D O I
10.1112/blms.12466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the imaginary multiplicative chaos exp(i beta Gamma) determines the gradient of the underlying field Gamma for all log-correlated Gaussian fields with covariance of the form -log|x-y|+g(x,y) with mild regularity conditions on g, for all d >= 2 and for all beta is an element of(0, root d). In particular, we show that the 2D continuum zero boundary Gaussian free field is measurable with respect to its imaginary chaos.
引用
收藏
页码:861 / 870
页数:10
相关论文
共 50 条
  • [21] Critical Gaussian multiplicative chaos revisited
    Lacoin, Hubert
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (04): : 2328 - 2351
  • [22] Characterisation of Planar Brownian Multiplicative Chaos
    Antoine Jego
    Communications in Mathematical Physics, 2023, 399 : 971 - 1019
  • [23] Gaussian Multiplicative Chaos and KPZ Duality
    Julien Barral
    Xiong Jin
    Rémi Rhodes
    Vincent Vargas
    Communications in Mathematical Physics, 2013, 323 : 451 - 485
  • [24] Critical Gaussian Multiplicative Chaos: a Review
    Powell, Ellen
    MARKOV PROCESSES AND RELATED FIELDS, 2021, 27 (04) : 557 - 606
  • [25] Multiplicative chaos of the Brownian loop soup
    Aidekon, Elie
    Berestycki, Nathanael
    Jego, Antoine
    Lupu, Titus
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 126 (04) : 1254 - 1393
  • [26] Combining Multifractal Additive and Multiplicative Chaos
    Julien Barral
    Stéphane Seuret
    Communications in Mathematical Physics, 2005, 257 : 473 - 497
  • [27] SECULAR COEFFICIENTS AND THE HOLOMORPHIC MULTIPLICATIVE CHAOS
    Najnudel, Joseph
    Paquette, Elliot
    Simm, Nick
    ANNALS OF PROBABILITY, 2023, 51 (04): : 1193 - 1248
  • [28] Some topics in the theory of multiplicative chaos
    Fan, AH
    FRACTAL GEOMETRY AND STOCHASTICS III, 2004, 57 : 119 - 134
  • [29] Combining multifractal additive and multiplicative chaos
    Barral, J
    Seuret, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (02) : 473 - 497
  • [30] Gaussian multiplicative chaos and applications: A review
    Rhodes, Remi
    Vargas, Vincent
    PROBABILITY SURVEYS, 2014, 11 : 315 - 392