Photoconductivity Relaxation Mechanisms of InGaAs/GaAs Quantum Dot Chain Structures

被引:8
|
作者
Kondratenko, Serhiy V. [1 ]
Iliash, Sviatoslav A. [1 ]
Vakulenko, Oleg V. [1 ]
Mazur, Yuriy I. [2 ]
Benamara, Mourad [2 ]
Marega, Euclydes, Jr. [2 ,3 ]
Salamo, Gregory J. [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Phys, 64 Volodymyrska St, UA-01601 Kiev, Ukraine
[2] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[3] Univ Sao Paulo, Inst Fis Sao Carlos, CP 369, BR-13560970 Sao Carlos, SP, Brazil
来源
基金
美国国家科学基金会;
关键词
Quantum dot chain; InAs/InGaAs; Nanostructure; Semiconductor; Photoluminescence; Photoconductivity recombination; Quantum-size state; GAAS; EL2; ANTISITE; DEFECTS;
D O I
10.1186/s11671-017-1954-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An experimental study of the photoconductivity time decay in InGaAs/GaAs quantum dot chain structures is reported. Different photoconductivity relaxations resulting from spectrally selecting photoexcitation of InGaAs QWR or QDs as well as GaAs spacers were measured. The photoconductivity relaxation after excitation of 650 nm follows a stretched exponent with decay constant dependent on morphology of InGaAs epitaxial layers. Kinetics with 980 nm excitation are successfully described by equation that takes into account the linear recombination involving Shockley-Read centers in the GaAs spacers and bimolecular recombination via quantum-size states of InGaAs QWRs or QDs.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Near- and mid-infrared spectroscopy of InGaAs/GaAs quantum dot structures
    Shalygin, VA
    Vorobjev, LE
    Glukhovskoy, AV
    Danilov, SN
    Panevin, VY
    Firsov, DA
    Volovik, BV
    Ledentsov, NN
    Livshits, DA
    Ustinov, VM
    Shernyakov, YM
    Tsatsul'nikov, AF
    Weber, A
    Grundmann, M
    NANOTECHNOLOGY, 2001, 12 (04) : 447 - 449
  • [32] Cooperative Effects in the Photoluminescence of (In,Ga)As/GaAs Quantum Dot Chain Structures
    Mazur, Yu. I.
    Dorogan, V. G.
    Marega, E., Jr.
    Cesar, D. F.
    Lopez-Richard, V.
    Marques, G. E.
    Zhuchenko, Z. Ya.
    Tarasov, G. G.
    Salamo, G. J.
    NANOSCALE RESEARCH LETTERS, 2010, 5 (06): : 991 - 1001
  • [33] Cooperative Effects in the Photoluminescence of (In,Ga)As/GaAs Quantum Dot Chain Structures
    Yu I Mazur
    VG Dorogan
    E Marega
    DF Cesar
    V Lopez-Richard
    GE Marques
    Z Ya Zhuchenko
    GG Tarasov
    GJ Salamo
    Nanoscale Research Letters, 5
  • [34] Study of intermixing in InGaAs/(Al)GaAs quantum well and quantum dot structures for optoelectronic/photonic integration
    Fu, L
    Lever, P
    Tan, HH
    Jagadish, C
    Reece, P
    Gal, M
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 2005, 152 (05): : 491 - 496
  • [35] Optical properties of electron beam and γ-ray irradiated InGaAs/GaAs quantum well and quantum dot structures
    Aierken, A.
    Guo, Q.
    Huhtio, T.
    Sopanen, M.
    He, Ch F.
    Li, Y. D.
    Wen, L.
    Ren, D. Y.
    RADIATION PHYSICS AND CHEMISTRY, 2013, 83 : 42 - 47
  • [36] Submonolayer InGaAs/GaAs quantum dot solar cells
    Lam, Phu
    Wu, Jiang
    Tang, Mingchu
    Jiang, Qi
    Hatch, Sabina
    Beanland, Richard
    Wilson, James
    Allison, Rebecca
    Liu, Huiyun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 126 : 83 - 87
  • [37] Ramsey fringes in a single InGaAs/GaAs quantum dot
    Ester, P.
    Stuffer, S.
    de Vasconcellos, S. Michaelis
    Bichler, M.
    Zrenner, A.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (10): : 2229 - 2232
  • [38] Intrinsic performance of InGaAs/GaAs quantum dot lasers
    Thomson, J
    Smowton, P
    Summers, H
    Herrmann, E
    Blood, P
    Hopkinson, M
    LEOS 2000 - IEEE ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS. 1 & 2, 2000, : 308 - 309
  • [39] InGaAs-GaAs quantum-dot lasers
    Technical Univ-Berlin, Berlin, Germany
    IEEE J Sel Top Quantum Electron, 2 (196-205):
  • [40] InGaAs-GaAs quantum-dot lasers
    Bimberg, D
    Kirstaedter, N
    Ledentsov, NN
    Alferov, ZI
    Kopev, PS
    Ustinov, VM
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (02) : 196 - 205