On pixel-based texture synthesis by non-parametric sampling

被引:10
|
作者
Shin, Seunghyup
Nishita, Tomoyuki
Shin, Sung Yong [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Div CS, Taejon 305701, South Korea
[2] Elect & Telecommun Res Inst, Comp Graph Res Team, Digital Content Res Div, Taejon 305700, South Korea
[3] Univ Tokyo, Grad Sch Frontier Sci, Dept Complex Sci & Engn, Bunkyo Ku, Tokyo 1130033, Japan
来源
COMPUTERS & GRAPHICS-UK | 2006年 / 30卷 / 05期
关键词
texture synthesis; image processing; non-parametric sampling;
D O I
10.1016/j.cag.2006.07.023
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a pixel-based method for texture synthesis with non-parametric sampling. On top of the general framework of pixel-based approaches, our method has three distinguishing features: window size estimation, seed point planting, and iterative refinement. The size of a window is estimated to capture the structural components of the dominant scale embedded in the texture sample. To guide the pixel sampling process at the initial iteration, a grid of seed points are sampled from the example texture. Finally, an iterative refinement scheme is adopted to diffuse the non-stationarity artifact over the entire texture. Our objective is to enhance texture quality as much as possible with a minor sacrifice in efficiency in order to support our conjecture that the pixel-based approach would yield high quality images. (c) 2006 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:767 / 778
页数:12
相关论文
共 50 条
  • [31] A non-parametric test for umbrella alternatives based on ranked-set sampling
    Magel, RC
    Qin, L
    JOURNAL OF APPLIED STATISTICS, 2003, 30 (08) : 925 - 937
  • [32] Pixel-based parametric source depth map for Cerenkov luminescence imaging
    Altabella, L.
    Boschi, F.
    Spinelli, A. E.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [33] BTF Compound Texture Model with Non-Parametric Control Field
    Haindl, Michal
    Havlicek, Vojtech
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1151 - 1156
  • [34] Non-parametric texture defect detection using Weibull features
    Timm, Fabian
    Barth, Erhardt
    IMAGE PROCESSING: MACHINE VISION APPLICATIONS IV, 2011, 7877
  • [35] CONTENT-ADAPTIVE NON-PARAMETRIC TEXTURE SIMILARITY MEASURE
    Alfarraj, Motaz
    Alaudah, Yazeed
    AlRegib, Ghassan
    2016 IEEE 18TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2016,
  • [36] Sub-pixel non-parametric PSF estimation for image enhancement
    Zandhuis, JA
    Pycock, D
    Quigley, SF
    Webb, PW
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 1997, 144 (05): : 285 - 292
  • [37] Sub-sampling for Efficient Non-Parametric Bandit Exploration
    Baudry, Dorian
    Kaufmann, Emilie
    Maillard, Odalric-Ambrym
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [38] Non-parametric partial importance sampling for financial derivative pricing
    Neddermeyer, Jan C.
    QUANTITATIVE FINANCE, 2011, 11 (08) : 1193 - 1206
  • [39] Rainfall Forecasting Using Sub sampling Non-parametric Methods
    Pucheta, J.
    Rodriguez Rivero, C.
    Herrera, M.
    Salas, C.
    Sauchelli, V.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (01) : 646 - 650
  • [40] Depth Extraction from Video Using Non-parametric Sampling
    Karsch, Kevin
    Liu, Ce
    Kang, Sing Bing
    COMPUTER VISION - ECCV 2012, PT V, 2012, 7576 : 775 - 788