MDDs are Efficient Modeling Tools: An Application to Some Statistical Constraints

被引:4
|
作者
Perez, Guillaume [1 ]
Regin, Jean-Charles [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, I3S, Sophia Antipolis, France
来源
INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING, CPAIOR 2017 | 2017年 / 10335卷
关键词
MULTIVALUED DECISION DIAGRAMS; DEVIATION CONSTRAINT;
D O I
10.1007/978-3-319-59776-8_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that from well-known MDDs like the one modeling a sum, and operations between MDDs we can define efficient propagators of some complex constraints, like a weighted sum whose values satisfy a normal law. In this way, we avoid defining ad-hoc filtering algorithms. We apply this idea to different dispersion constraints and on a new statistical constraint we introduce: the Probability Mass Function constraint. We experiment out approach on a real world application. The conjunction of MDDs clearly outperforms all previous methods.
引用
收藏
页码:30 / 40
页数:11
相关论文
共 50 条