Tube extrusion from permeabilized giant vesicles

被引:7
|
作者
Borghi, N. [1 ]
Kremer, S. [1 ]
Askovic, V. [1 ]
Brochard-Wyart, F. [1 ]
机构
[1] CNRS, UMR 168, Inst Curie, Lab PCC, F-75231 Paris 05, France
来源
EUROPHYSICS LETTERS | 2006年 / 75卷 / 04期
关键词
D O I
10.1209/epl/i2006-10142-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This letter reports the permeabilization effects of chemical additives on mechanical properties of Giant Unilamellar Vesicles (GUVs). We use a surfactant, Tween 20, inducing transient pores and a protein, Streptolysin O, inducing permanent pores in the membrane. Lipid tubes are extracted from GUVs anchored onto the tip of a micro-needle and submitted to hydrodynamic flows. On bare vesicles, tube extrusion is governed by the entropic elasticity of the membrane. The vesicle tension increases until it balances the flow velocity U and the tube reaches a stationary length. In permeabilized vesicles, the membrane tension is maintained at a constant value sigma(p) by the permeation of inner solution through nanometric pores. This allows extrusion of "infinite" tubes at constant velocity that never reach a stationary length. Tween-20 preliminary results suggest that sigma(p) strongly depends on surfactant concentration. For Streptolysin O, we have measured sigma(p) vs. U and found two regimes: a "high-porosity" regime for U > U-p0 and a "low-porosity" regime for U < U-p0, where U-p0 is related to the number of pores on the vesicle surface.
引用
收藏
页码:666 / 672
页数:7
相关论文
共 50 条
  • [31] THE FLOW OF METAL IN TUBE EXTRUSION
    BLAZEY, C
    BROAD, L
    GUMMER, WS
    THOMPSON, DB
    JOURNAL OF THE INSTITUTE OF METALS, 1948, 75 (03): : 163 - &
  • [32] Extrusion studies of lipid vesicles.
    Patty, PJ
    Frisken, BJ
    BIOPHYSICAL JOURNAL, 2000, 78 (01) : 62A - 62A
  • [33] THE FLOW OF METAL IN TUBE EXTRUSION
    HULL, DR
    JOURNAL OF THE INSTITUTE OF METALS, 1949, 75 (12): : 1206 - &
  • [34] Inward and outward membrane tubes pulled from giant vesicles
    Dasgupta, Raktim
    Dimova, Rumiana
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (28)
  • [35] Facile and Rapid Formation of Giant Vesicles from Glass Beads
    Tanasescu, Radu
    Mettal, Ute
    Colom, Adai
    Roux, Aurelien
    Zumbuehl, Andreas
    POLYMERS, 2018, 10 (01):
  • [36] Protein reconstitution into giant unilamellar vesicles from native nanodiscs
    Ezsias, Bence
    Strassgschwandtner, Simon
    Halbeisen, Marco
    Siligan, Christine
    Keller, Sandro
    Pohl, Peter
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 448A - 448A
  • [37] From giant vesicles to filaments and wires: Templates for conducting polymers
    Kros, A
    Linhardt, JG
    Bowman, HK
    Tirrell, DA
    ADVANCED MATERIALS, 2004, 16 (08) : 723 - +
  • [38] Interaction between catanionic vesicles and giant magnetic vesicles
    Beaune, Gregory
    Soussan, Elodie
    Blanzat, Muriel
    Rico-Lattes, Isabelle
    Cabuil, Valerie
    Menager, Christine
    COMPTES RENDUS CHIMIE, 2009, 12 (1-2) : 38 - 44
  • [39] Electrostatic layering of giant vesicles
    Menger, FM
    Keiper, JS
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1997, 36 (22): : 2489 - 2491
  • [40] Giant vesicles in electric fields
    Dimova, Rumiana
    Riske, Karin A.
    Aranda, Said
    Bezlyepkina, Natalya
    Knorr, Roland L.
    Lipowsky, Reinhard
    SOFT MATTER, 2007, 3 (07) : 817 - 827