Pricing Discrete Barrier Options Under the Jump-Diffusion Model with Stochastic Volatility and Stochastic Intensity

被引:0
|
作者
Duan, Pingtao [1 ]
Liu, Yuting [1 ]
Ma, Zhiming [2 ]
机构
[1] Beijing Jiaotong Univ, Sch Sci, Beijing 100044, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Zhong Guan Cun East Rd 55, Beijing 100190, Peoples R China
关键词
Option pricing; Discrete barrier options; Jump-diffusion model; Stochastic volatility; Stochastic intensity; FAST FOURIER-TRANSFORM; VALUATION; BERMUDAN;
D O I
10.1007/s40304-022-00287-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the problem of numerically evaluating discrete barrier option prices when the underlying asset follows the jump-diffusion model with stochastic volatility and stochastic intensity. We derive the three-dimensional characteristic function of the log-asset price, the volatility and the jump intensity. We also provide the approximate formula of the discrete barrier option prices by the three-dimensional Fourier cosine series expansion (3D-COS) method. Numerical results show that the 3D-COS method is rather correct, fast and competent for pricing the discrete barrier options.
引用
收藏
页码:239 / 263
页数:25
相关论文
共 50 条
  • [21] Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: Applications of Fourier inversion methods
    Scott, LO
    [J]. MATHEMATICAL FINANCE, 1997, 7 (04) : 413 - 426
  • [22] Fractional Jump-diffusion Pricing Model under Stochastic Interest Rate
    Xue, Hong
    Lu, Junxiang
    Li, Qiaoyan
    Wang, Xiaodong
    [J]. INFORMATION AND FINANCIAL ENGINEERING, ICIFE 2011, 2011, 12 : 428 - 432
  • [23] European option pricing under stochastic volatility jump-diffusion models with transaction cost
    Tian, Yingxu
    Zhang, Haoyan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) : 2722 - 2741
  • [24] PRICING BARRIER OPTIONS UNDER STOCHASTIC VOLATILITY FRAMEWORK
    ZHAI Yunfei
    BI Xiuchun
    ZHANG Shuguang
    [J]. Journal of Systems Science & Complexity, 2013, 26 (04) : 609 - 618
  • [25] Pricing barrier options under stochastic volatility framework
    Zhai Yunfei
    Bi Xiuchun
    Zhang Shuguang
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2013, 26 (04) : 609 - 618
  • [26] Pricing barrier options under stochastic volatility framework
    Yunfei Zhai
    Xiuchun Bi
    Shuguang Zhang
    [J]. Journal of Systems Science and Complexity, 2013, 26 : 609 - 618
  • [27] Hedging of options for jump-diffusion stochastic volatility models by Malliavin calculus
    Minoo Bakhshmohammadlou
    Rahman Farnoosh
    [J]. Mathematical Sciences, 2021, 15 : 337 - 343
  • [28] Hedging of options for jump-diffusion stochastic volatility models by Malliavin calculus
    Bakhshmohammadlou, Minoo
    Farnoosh, Rahman
    [J]. MATHEMATICAL SCIENCES, 2021, 15 (04) : 337 - 343
  • [29] Pricing options under stochastic volatility jump model: A stable adaptive scheme
    Soleymani, F.
    Barfeie, M.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 69 - 89
  • [30] The pricing of defaultable bonds under a regime-switching jump-diffusion model with stochastic default barrier
    Xu, Chao
    Dong, Yinghui
    Wang, Guojing
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (09) : 2185 - 2205