Poly(ethylene oxide)-Li10SnP2S12 Composite Polymer Electrolyte Enables High-Performance All-Solid-State Lithium Sulfur Battery

被引:118
|
作者
Li, Xue [1 ]
Wang, Donghao [1 ]
Wang, Hongchun [1 ]
Yan, Hefeng [1 ]
Gong, Zhengliang [1 ]
Yang, Yong [1 ,2 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surface, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Li-S batteries; solid polymer electrolyte; polyethylene oxide; sulfide lithium ionic conductor; interfacial stability; ION-CONDUCTING MEMBRANE; CATHODE MATERIAL; METAL; ANODE; INTERFACE;
D O I
10.1021/acsami.9b05212
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Composite polymer electrolyte membranes are fabricated by the incorporation of Li10SnP2S12 into the poly(ethylene oxide) (PEO) matrix using a solution-casting method. The incorporation of Li10SnP2S12 plays a positive role on Li-ionic conductivity, mechanical property, and interfacial stability of the composite electrolyte and thus significantly enhances the electrochemical performance of the solid-state Li-S battery. The optimal PEO-1%Li10SnP2S12 electrolyte presents a maximum ionic conductivity of 1.69 x 10(-4) S cm(-1) at 50 degrees C and the highest mechanical strength. The possible mechanism for the enhanced electrochemical performance and mechanical property is analyzed. The uniform distribution of Li10SnP2S12 in the PEO matrix inhibits crystallization and weakens the interactions among the PEO chains. The PEO-1%Li10SnP2S12 electrolyte exhibits lower interfacial resistance and higher interfacial stability with the lithium anode than the pure PEO/LiTFSI electrolyte. The Li-S cell comprising the PEO-1%Li10SnP2S12 electrolyte exhibits outstanding electrochemical performance with a high discharge capacity (ca. 1000 mA h g(-1)), high Coulombic efficiency, and good cycling stability at 60 degrees C. Most importantly, the PEO-1%Li10SnP2S12-based cell possesses attractive performance with a high specific capacity (ca. 800 mA h g(-1)) and good cycling stability even at 50 degrees C, whereas the PEO/LiTFSI-based cell cannot be successfully discharged because of the low ionic conductivity and high interfacial resistance of the PEO/LiTFSI electrolyte.
引用
收藏
页码:22745 / 22753
页数:9
相关论文
共 50 条
  • [31] Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium-sulfur battery
    Kou, Weijie
    Wang, Junxiao
    Li, Wenpeng
    Lv, Ruixin
    Peng, Na
    Wu, Wenjia
    Wang, Jingtao
    JOURNAL OF MEMBRANE SCIENCE, 2021, 634
  • [32] High performance all-solid-state lithium-sulfur battery using a Li2SVGCF nanocomposite
    Eom, Minyong
    Son, Seunghyeon
    Park, Chanhwi
    Noh, Sungwoo
    Nichols, William T.
    Shin, Dongwook
    ELECTROCHIMICA ACTA, 2017, 230 : 279 - 284
  • [33] Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability
    Zhang, Jun
    Zheng, Chao
    Lou, Jiatao
    Xia, Yang
    Liang, Chu
    Huang, Hui
    Gan, Yongping
    Tao, Xinyong
    Zhang, Wenkui
    JOURNAL OF POWER SOURCES, 2019, 412 : 78 - 85
  • [34] High-Performance Solid Composite Polymer Electrolyte for all Solid-State Lithium Battery Through Facile Microstructure Regulation
    Yang, Jingjing
    Wang, Xun
    Zhang, Gai
    Ma, Aijie
    Chen, Weixing
    Shao, Le
    Shen, Chao
    Xie, Keyu
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [35] Solution-processable Li10GeP2S12 solid electrolyte for a composite electrode in all-solid-state lithium batteries
    Yu, Genxi
    Wang, Yaping
    Li, Kai
    Chen, Daming
    Qin, Liguang
    Xu, Hui
    Chen, Jian
    Zhang, Wei
    Zhang, Peigen
    Sun, Zhengming
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (04): : 1211 - 1221
  • [36] A concentrated poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte for all-solid-state Li battery
    Zhenguang Li
    Jonas Mindemark
    Daniel Brandell
    Yoichi Tominaga
    Polymer Journal, 2019, 51 : 753 - 760
  • [37] Solution-processable Li10GeP2S12solid electrolyte for a composite electrode in all-solid-state lithium batteries
    Yu, Genxi
    Wang, Yaping
    Li, Kai
    Chen, Daming
    Qin, Liguang
    Xu, Hui
    Chen, Jian
    Zhang, Wei
    Zhang, Peigen
    Sun, Zhengming
    Sustainable Energy and Fuels, 2021, 5 (04): : 1211 - 1221
  • [38] A concentrated poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte for all-solid-state Li battery
    Li, Zhenguang
    Mindemark, Jonas
    Brandell, Daniel
    Tominaga, Yoichi
    POLYMER JOURNAL, 2019, 51 (08) : 753 - 760
  • [39] Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10GeP2S12
    Kato, Yuki
    Kawamoto, Koji
    Kanno, Ryoji
    Hirayama, Masaaki
    ELECTROCHEMISTRY, 2012, 80 (10) : 749 - 751
  • [40] Solid electrolyte based on waterborne polyurethane and poly(ethylene oxide) blend polymer for all-solid-state lithium ion batteries
    Bao, Junjie
    Qu, Xinbo
    Qi, Guoqin
    Huang, Qikai
    Wu, Shufan
    Tao, Can
    Gao, Minghao
    Chen, Chunhua
    SOLID STATE IONICS, 2018, 320 : 55 - 63