Deep learning enables fully automated mitotic density assessment in breast cancer histopathology

被引:0
|
作者
Balkenhol, M. [1 ]
Bult, P. [1 ]
Tellez, D. [1 ]
Vreuls, W. [2 ]
Clahsen, P. [3 ]
Ciompi, F. [1 ]
Van der Laak, J. [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Pathol, Nijmegen, Netherlands
[2] Canisius Wilhelmina Hosp, Pathol, Nijmegen, Netherlands
[3] Haaglanden Med Ctr, Pathol, The Hague, Netherlands
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
340
引用
收藏
页码:S86 / S86
页数:1
相关论文
共 50 条
  • [31] URO - Fully Automated Deep Learning Model for the Detection of Prostate Cancer
    Krome, Susanne
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2025, 197 (04): : 367 - 367
  • [32] A fully-automated deep learning pipeline for cervical cancer classification
    Alyafeai, Zaid
    Ghouti, Lahouari
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 141
  • [33] Deep-LIBRA: An artificial intelligence approach for fully-automated assessment of breast density in digital mammography.
    Maghsoudi, Omid Haji
    Christopher, Scott
    Gastounioti, Aimilia
    Pantalone, Lauren
    Wu, Fang-Fang
    Cohen, Eric A.
    Stacey, Winham
    Conant, Emily F.
    Vachon, Celine
    Kontos, Despina
    CANCER RESEARCH, 2021, 81 (13)
  • [34] An automated deep learning based mitotic cell detection and recognition in whole slide invasive breast cancer tissue images
    Cayir, S.
    Solmaz, G.
    Kusetogullari, H.
    Tokat, F.
    Bozaba, E.
    Karakaya, S.
    Iheme, L.
    Tekin, E.
    Yazici, C.
    Ozsoy, G.
    Ayalti, S.
    Kayhan, K.
    Ince, U.
    Uzel, B.
    Kilic, O.
    Darbaz, B.
    VIRCHOWS ARCHIV, 2022, 481 (SUPPL 1) : S303 - S303
  • [35] Toward fully automated assessment of the central vein sign using deep learning
    Huelnhagen, T.
    Al Louzi, O.
    Fartaria, M. J.
    Daboul, L.
    Reich, D. S.
    Richiardi, J.
    Sati, P.
    Kober, T.
    MULTIPLE SCLEROSIS JOURNAL, 2021, 27 (2_SUPPL) : 461 - 462
  • [36] Fully automated deep learning approach to dental development assessment in panoramic radiographs
    Ong, Seung-Hwan
    Kim, Hyuntae
    Song, Ji-Soo
    Shin, Teo Jeon
    Hyun, Hong-Keun
    Jang, Ki-Taeg
    Kim, Young-Jae
    BMC ORAL HEALTH, 2024, 24 (01):
  • [37] DEEP LEARNING-BASED ASSESSMENT OF TUMOR-ASSOCIATED STROMA FOR DIAGNOSING BREAST CANCER IN HISTOPATHOLOGY IMAGES
    Bejnordi, Babak Ehteshami
    Lin, Jimmy
    Glass, Ben
    Mullooly, Maeve
    Gierach, Gretchen L.
    Sherman, Mark E.
    Karssemeijer, Nico
    van der Laak, Jeroen
    Beck, Andrew H.
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 929 - 932
  • [38] Deep learning in cancer genomics and histopathology
    Unger, Michaela
    Kather, Jakob Nikolas
    GENOME MEDICINE, 2024, 16 (01)
  • [39] Deep learning in cancer genomics and histopathology
    Michaela Unger
    Jakob Nikolas Kather
    Genome Medicine, 16
  • [40] Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models
    Hameed, Zabit
    Zahia, Sofia
    Garcia-Zapirain, Begonya
    Javier Aguirre, Jose
    Maria Vanegas, Ana
    SENSORS, 2020, 20 (16) : 1 - 17