Computational time-of-flight diffuse optical tomography

被引:66
|
作者
Lyons, Ashley [1 ]
Tonolini, Francesco [2 ]
Boccolini, Alessandro [3 ]
Repetti, Audrey [4 ]
Henderson, Robert [5 ]
Wiaux, Yves [4 ]
Faccio, Daniele [1 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
[2] Univ Glasgow, Sch Comp Sci, Glasgow, Lanark, Scotland
[3] Heriot Watt Univ, Inst Photon & Quantum Sci, Edinburgh, Midlothian, Scotland
[4] Heriot Watt Univ, Inst Sensors Signals & Syst, Edinburgh, Midlothian, Scotland
[5] Univ Edinburgh, Inst Micro & Nano Syst, Edinburgh, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
SPATIAL-RESOLUTION PERFORMANCE; SCATTERING MEDIA; TISSUE;
D O I
10.1038/s41566-019-0439-x
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Imaging through a strongly diffusive medium remains an outstanding challenge, in particular in applications in biological and medical imaging. Here, we propose a method based on a single-photon time-of-flight camera that allows, in combination with computational processing of the spatial and full temporal photon distribution data, imaging of an object embedded inside a strongly diffusive medium over more than 80 transport mean free paths. The technique is contactless and requires "I s acquisition times, thus allowing Hz frame rate imaging. The imaging depth corresponds to several centimetres of human tissue and allows us to perform deep-body imaging as a proof of principle.
引用
收藏
页码:575 / +
页数:6
相关论文
共 50 条
  • [31] Time-of-Flight Computed Tomography a Proof of Principle Study
    Rossignol, Julien
    Fontaine, Rejean
    Turtos, Rosana Martinez
    Gundacker, Stefan
    Auffray, Etiennette
    Lecoq, Plecoq
    Berube-Lauziere, Yves
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [32] Nondestructive defect identification with terahertz time-of-flight tomography
    Zhong, H
    Xu, JZ
    Xie, X
    Yuan, T
    Reightler, R
    Madaras, E
    Zhang, XC
    [J]. IEEE SENSORS JOURNAL, 2005, 5 (02) : 203 - 208
  • [33] Correction for thermal diffuse scattering in time-of-flight neutron diffraction
    Popa, N.C.
    Willis, B.T.M.
    [J]. Acta Crystallographica, Section A: Foundations of Crystallography, 1997, 53 (pt 5):
  • [34] Oscillatory diffuse scattering study by time-of-flight neutron scattering
    Basar, Khairul
    Xiang Lian
    Siagian, Sainer
    Sakuma, Takashi
    Takahashi, Haruyuki
    Yonemura, Masao
    Kamiyama, Takashi
    Ishigaki, Toru
    Igawa, Naoki
    [J]. PHYSICA B-CONDENSED MATTER, 2008, 403 (17) : 2557 - 2560
  • [35] Correction for thermal diffuse scattering in time-of-flight neutron diffraction
    Popa, NC
    Willis, BTM
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1997, 53 : 537 - 545
  • [36] THERMAL DIFFUSE-SCATTERING IN TIME-OF-FLIGHT NEUTRON DIFFRACTOMETRY
    POPA, NC
    WILLIS, BTM
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1994, 50 : 57 - 63
  • [37] Time-of-flight and vector polarization analysis for diffuse neutron scattering
    Schweika, W
    [J]. PHYSICA B-CONDENSED MATTER, 2003, 335 (1-4) : 157 - 163
  • [38] Fourier transform provides computational advantages for time-domain diffuse optical tomography
    Mozumder, Meghdoot
    Tarvainen, Tanja
    [J]. DIFFUSE OPTICAL SPECTROSCOPY AND IMAGING VIII, 2021, 11920
  • [39] Comparative study of optical coherence tomography, photoacoustic technique and time-of-flight technique in phantom measurements
    Kinnunen, Matti
    Myllyla, Risto
    [J]. Saratov Fall Meeting 2005: Optical Technologies in Biophysics and Medicine VII, 2006, 6163 : 16304 - 16304
  • [40] Integration of time-of-flight distance measurement to optical coherence tomography for extending its operating range
    Sanchez, Juan Manuel Franco
    Masaki, Shunya
    Shimamoto, Yuki
    Cervantes, Joel
    Kagawa, Keiichiro
    Nagahara, Hajime
    Hayasaki, Yoshio
    [J]. ADVANCED OPTICAL IMAGING TECHNOLOGIES III, 2020, 11549