Anisotropic electrospun honeycomb polycaprolactone scaffolds: Elaboration, morphological and mechanical properties

被引:9
|
作者
Mondesert, Hugues [1 ,2 ]
Bossard, Frederic [1 ]
Favier, Denis [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, LRP,Inst Engn Univ Grenoble Alpes, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, Grenoble INP, CHU Grenoble Alpes, CNRS,TTMC IMAG,Inst Engn Univ Grenoble Alpes, F-38000 Grenoble, France
关键词
Mechanical anisotropy; Scaffolds; Electrospinning; Honeycomb patterns; FIBER MATS; STEM-CELLS; NANOFIBERS; PCL; FABRICATION; MEMBRANES; DEFORMATION; CONSTRUCTS; PATTERNS; DESIGN;
D O I
10.1016/j.jmbbm.2020.104124
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Tissue engineering technology requires porous scaffolds, based on biomaterials, which have to mimic as closely as possible the morphological and anisotropic mechanical properties of the native tissue to substitute. Anisotropic fibrous scaffolds fabricated by template-assisted electrospinning are investigated in this study. Fibers of electrospun Polycaprolactone (PCL) were successfully arranged spatially into honeycomb structures by using well-shaped 3D micro-architected metal collectors. Fibrous scaffolds present 2 x 4 mm(2) wide elementary patterns with low and high fiber density areas. Distinct regions of the honeycomb patterns were analyzed through SEM images revealing different fiber diameters with specific fiber orientation depending on the regions of interest. Tensile test experiments were carried out with an optical observation of the local deformation at the pattern scale, allowing the determination and analysis, at small and large deformation, of the axial and transverse local strains. The honeycomb patterned mats showed significantly different mechanical properties along the two orthogonal directions probing an anisotropic ratio of 4.2. Stress relaxation test was performed on scaffolds at 15% of strain. This measurement pointed out the low contribution of the viscosity of about 20% in the mechanical response of the scaffold. An orthotropic linear elastic model was consequently proposed to characterize the anisotropic behavior of the produced patterned membranes. This new versatile method to produce architected porous materials, adjustable to several polymers and structures, will provide appealing benefits for soft regenerative medicine application and the development of custom-made scaffolds.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Mechanical property and biological performance of electrospun silk fibroin-polycaprolactone scaffolds with aligned fibers
    Yuan, Han
    Shi, Hongfei
    Qiu, Xushen
    Chen, Yixin
    [J]. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2016, 27 (03) : 263 - 275
  • [22] Polycaprolactone/Graphene Nanocomposites: Synthesis, Characterization and Mechanical Properties of Electrospun Nanofibers
    Bagheri, Massoumeh
    Mahmoodzadeh, Ahad
    [J]. JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2020, 30 (05) : 1566 - 1577
  • [23] Polycaprolactone/Graphene Nanocomposites: Synthesis, Characterization and Mechanical Properties of Electrospun Nanofibers
    Massoumeh Bagheri
    Ahad Mahmoodzadeh
    [J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30 : 1566 - 1577
  • [24] Mimicking nature: Fabrication of 3D anisotropic electrospun polycaprolactone scaffolds for cartilage tissue engineering applications
    Girao, Andre F.
    Semitela, Angela
    Ramalho, Goncalo
    Completo, Antonio
    Marques, Paula A. A. P.
    [J]. COMPOSITES PART B-ENGINEERING, 2018, 154 : 99 - 107
  • [25] Thick electrospun honeycomb scaffolds with controlled pore size
    Nedjari, Salima
    Schlatter, Guy
    Hebraud, Anne
    [J]. MATERIALS LETTERS, 2015, 142 : 180 - 183
  • [26] Characterization and optimization of the mechanical properties of electrospun gelatin nanofibrous scaffolds
    Nuge, Tamrin
    Tshai, Kim Yeow
    Lim, Siew Shee
    Nordin, Norshariza
    Hoque, Md Enamul
    [J]. WORLD JOURNAL OF ENGINEERING, 2020, 17 (01) : 12 - 20
  • [27] Polycaprolactone and polycaprolactone/tricalcium phosphate scaffolds with the bactericidal properties
    Choinska, E.
    Zaleczny, R.
    Pawelec, M.
    Polowniak-Pracka, H.
    Swieszkowski, W.
    Kurzydlowski, K. J.
    [J]. JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 323 - 323
  • [28] Mechanical properties of re-entrant chiral anisotropic honeycomb
    Chen, Mingming
    Zhong, Rongchang
    Wang, Yunzhou
    Wu, Hao
    Fu, Minghui
    [J]. ENGINEERING STRUCTURES, 2023, 291
  • [29] Quantification of Protein Incorporated into Electrospun Polycaprolactone Tissue Engineering Scaffolds
    Zander, Nicole E.
    Orlicki, Joshua A.
    Rawlett, Adam M.
    Beebe, Thomas P., Jr.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (04) : 2074 - 2081
  • [30] Design and fabrication of electrospun polycaprolactone/chitosan scaffolds for ligament regeneration
    Saatcioglu, Elif
    Ulag, Songul
    Sahin, Ali
    Yilmaz, Betul Karademir
    Ekren, Nazmi
    Inan, Ahmet Talat
    Palaci, Yuksel
    Ustundag, Cem Bulent
    Gunduz, Oguzhan
    [J]. EUROPEAN POLYMER JOURNAL, 2021, 148