Hierarchical Agglomerative Clustering Algorithm method for distributed generation planning

被引:16
|
作者
Vinothkumar, K. [1 ]
Selvan, M. P. [2 ]
机构
[1] ABB Global Ind & Serv Ltd, Madras 600089, Tamil Nadu, India
[2] Natl Inst Technol, Dept Elect & Elect Engn, Tiruchirappalli 620015, Tamil Nadu, India
关键词
Distributed generator (DG) planning; Performance indices; Multi-objective function; Hierarchical Agglomerative Clustering; Algorithm (HACA); GENETIC ALGORITHM; OPTIMIZATION; PLACEMENT; POWER;
D O I
10.1016/j.ijepes.2013.11.021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Planning of distributed generator (DG) units in the distribution system employing Hierarchical Agglomerative Clustering Algorithm (HACA) is proposed in this paper. The proposed method overcomes the dependency of existing methods of DG placement, either on the entire global preference information or on the experience of the distribution system planner. The proposed method is validated with weighted sum method and its effectiveness is tested using two distribution systems of different size and configuration. The results of the simulation study demonstrate the suitability of proposed method in solving the problem involving multiple objectives in DG planning studies. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:259 / 269
页数:11
相关论文
共 50 条
  • [31] Order preserving hierarchical agglomerative clustering
    Daniel Bakkelund
    Machine Learning, 2022, 111 : 1851 - 1901
  • [32] An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement
    Li, Teng
    Rezaeipanah, Amin
    El Din, ElSayed M. Tag
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (06) : 3828 - 3842
  • [33] An improved agglomerative hierarchical clustering anomaly detection method for scientific data
    Shi, Peng
    Zhao, Zhen
    Zhong, Huaqiang
    Shen, Hangyu
    Ding, Lianhong
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (06):
  • [34] PHA: A fast potential-based hierarchical agglomerative clustering method
    Lu, Yonggang
    Wan, Yi
    PATTERN RECOGNITION, 2013, 46 (05) : 1227 - 1239
  • [35] An Effective and Efficient Constrained Ward's Hierarchical Agglomerative Clustering Method
    Aljohani, Abeer A.
    Edirisinghe, Eran A.
    Lai, Daphne Teck Ching
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2020, 1037 : 590 - 611
  • [36] Method for Determining the Optimal Number of Clusters Based on Agglomerative Hierarchical Clustering
    Zhou, Shibing
    Xu, Zhenyuan
    Liu, Fei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (12) : 3007 - 3017
  • [37] A New Contiguity-Constrained Agglomerative Hierarchical Clustering Algorithm for Image Segmentation
    Concepcion Morales, Eduardo R.
    Yurramendi Mendizabal, Yosu
    CURRENT TOPICS IN ARTIFICIAL INTELLIGENCE, 2010, 5988 : 261 - +
  • [38] Fast agglomerative hierarchical clustering algorithm using Locality-Sensitive Hashing
    Hisashi Koga
    Tetsuo Ishibashi
    Toshinori Watanabe
    Knowledge and Information Systems, 2007, 12 : 25 - 53
  • [39] Towards An Intuitionistic Fuzzy Agglomerative Hierarchical Clustering Algorithm for Music Recommendation in Folksonomy
    Guan, Chun
    Yuen, Kevin Kam Fung
    Coenen, Frans
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 2039 - 2042
  • [40] Fast agglomerative hierarchical clustering algorithm using Locality-Sensitive Hashing
    Koga, Hisashi
    Ishibashi, Tetsuo
    Watanabe, Toshinori
    KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 12 (01) : 25 - 53