Ensemble Classification Algorithm for Hyperspectral Remote Sensing Data

被引:44
|
作者
Chi, Mingmin [1 ]
Kun, Qian [1 ]
Benediktsson, Jon Atli [2 ]
Feng, Rui [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[2] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
关键词
Ensemble classification; hyperspectral remote sensing images; mixture of Gaussians (MoGs); support cluster machine (SCM);
D O I
10.1109/LGRS.2009.2024624
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In real applications, it is difficult to obtain a sufficient number of training samples in supervised classification of hyperspectral remote sensing images. Furthermore, the training samples may not represent the real distribution of the whole space. To attack these problems, an ensemble algorithm which combines generative (mixture of Gaussians) and discriminative (support cluster machine) models for classification is proposed. Experimental results carried out on hyperspectral data set collected by the reflective optics system imaging spectrometer sensor, validates the effectiveness of the proposed approach.
引用
收藏
页码:762 / 766
页数:5
相关论文
共 50 条
  • [21] Hyperspectral Remote Sensing Image Classification Based on Partitioned Random Projection Algorithm
    Jia, Shuhan
    Zhao, Quanhua
    Li, Yu
    REMOTE SENSING, 2022, 14 (09)
  • [22] Research on Optimization Methods of ELM Classification Algorithm for Hyperspectral Remote Sensing Images
    Huang, Fang
    Lu, Jun
    Tao, Jian
    Li, Li
    Tan, Xicheng
    Liu, Peng
    IEEE ACCESS, 2019, 7 : 108070 - 108089
  • [23] A DBN for Hyperspectral Remote Sensing Image Classification
    Tong Guofeng
    Li Yong
    Cao Lihao
    Jin Chen
    PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 1757 - 1762
  • [24] Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas
    Dalponte, Michele
    Bruzzone, Lorenzo
    Gianelle, Damiano
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (05): : 1416 - 1427
  • [25] The spectral similarity scale and its application to the classification of hyperspectral remote sensing data
    Sweet, JN
    2003 IEEE WORKSHOP ON ADVANCES IN TECHNIQUES FOR ANALYSIS OF REMOTELY SENSED DATA, 2004, : 92 - 99
  • [26] A comparison of feature reduction techniques for classification of hyperspectral remote-sensing data
    Serpico, SB
    D'Incà, M
    Melgani, F
    Moser, G
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VIII, 2003, 4885 : 347 - 358
  • [27] IMPROVED CLASSIFICATION OF MANGROVES HEALTH STATUS USING HYPERSPECTRAL REMOTE SENSING DATA
    Vidhya, R.
    Vijayasekaran, D.
    Farook, M. Ahamed
    Jai, S.
    Rohini, M.
    Sinduja, A.
    ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 667 - 670
  • [28] Vegetation classification using hyperspectral and multi-angular remote sensing data
    Hu, Baoxin
    Freemantle, James
    Miller, John
    Smith, Anne
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1749 - +
  • [29] Block-based maximum likelihood classification for hyperspectral remote sensing data
    Jia, XP
    IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 778 - 780
  • [30] Airborne hyperspectral remote sensing image data is used for rice precise classification
    Zhang, Feng
    Xiong, Zhen
    Kou, Ning
    Wuhan Ligong Daxue Xuebao/Journal of Wuhan University of Technology, 2002, 24 (10):