Ensemble Classification Algorithm for Hyperspectral Remote Sensing Data

被引:44
|
作者
Chi, Mingmin [1 ]
Kun, Qian [1 ]
Benediktsson, Jon Atli [2 ]
Feng, Rui [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[2] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
关键词
Ensemble classification; hyperspectral remote sensing images; mixture of Gaussians (MoGs); support cluster machine (SCM);
D O I
10.1109/LGRS.2009.2024624
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In real applications, it is difficult to obtain a sufficient number of training samples in supervised classification of hyperspectral remote sensing images. Furthermore, the training samples may not represent the real distribution of the whole space. To attack these problems, an ensemble algorithm which combines generative (mixture of Gaussians) and discriminative (support cluster machine) models for classification is proposed. Experimental results carried out on hyperspectral data set collected by the reflective optics system imaging spectrometer sensor, validates the effectiveness of the proposed approach.
引用
收藏
页码:762 / 766
页数:5
相关论文
共 50 条
  • [1] Dynamic ensemble algorithm of SMOTE and rotation forest for imbalanced hyperspectral remote sensing classification
    Tong Y.
    Feng W.
    Song Y.
    Quan Y.
    Huang W.
    Gao L.
    Zhu W.
    Xing M.
    National Remote Sensing Bulletin, 2022, 26 (11) : 2369 - 2381
  • [2] Ensemble Strategies for Classifying Hyperspectral Remote Sensing Data
    Ceamanos, Xavier
    Waske, Bjorn
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Sveinsson, Johannes R.
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2009, 5519 : 62 - +
  • [3] CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES BY AN ENSEMBLE OF SUPPORT VECTOR MACHINES UNDER IMBALANCED DATA
    Eeti, Laxmi Narayana
    Buddhiraju, Krishna Mohan
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2659 - 2661
  • [4] Investigation of an ensemble framework for classification of hyperspectral remote sensing data with nearly equal spectral response classes
    Zortea, Maciel
    Moser, Gabriele
    Serpico, Sebastiano B.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIII, 2007, 6748
  • [5] TRP-Oriented Hyperspectral Remote Sensing Image Classification Using Entropy-Weighted Ensemble Algorithm
    Jia, Shuhan
    Li, Yu
    Zhao, Quanhua
    Wang, Changqiang
    REMOTE SENSING, 2023, 15 (09)
  • [6] A Multiple SVM System for Classification of Hyperspectral Remote Sensing Data
    Behnaz Bigdeli
    Farhad Samadzadegan
    Peter Reinartz
    Journal of the Indian Society of Remote Sensing, 2013, 41 : 763 - 776
  • [7] Multiple Classifier Systems for Hyperspectral Remote Sensing Data Classification
    Khosravi, Iman
    Mohammad-Beigi, Majid
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2014, 42 (02) : 423 - 428
  • [8] A Multiple SVM System for Classification of Hyperspectral Remote Sensing Data
    Bigdeli, Behnaz
    Samadzadegan, Farhad
    Reinartz, Peter
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2013, 41 (04) : 763 - 776
  • [9] Evaluation of kernels for multiclass classification of hyperspectral remote sensing data
    Fauvel, Mathieu
    Chanussot, Jocelyn
    Benediktsson, Jon Atli
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 2061 - 2064
  • [10] Selection Strategy of Classification Methods for Hyperspectral Remote Sensing Data
    Shang, Kun
    Xiao, Chenchao
    Wei, Hongyan
    Xie, Yisong
    2016 4rth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2016,