A POLYNOMIAL-TIME APPROXIMATION ALGORITHM FOR ALL-TERMINAL NETWORK RELIABILITY

被引:19
|
作者
Guo, Heng [1 ]
Jerrum, Mark [2 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
network reliability; approximate counting; randomized algorithms; COMPUTATIONAL-COMPLEXITY;
D O I
10.1137/18M1201846
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a fully polynomial-time randomized approximation scheme (FPRAS) for the all-terminal network reliability problem, which is to determine the probability that in an undirected graph, assuming each edge fails independently, the remainder of the graph is still connected. Our main contribution is to confirm a conjecture by Gorodezky and Pak [Random Structures Algorithms, 44 (2014), pp. 201-223] that the expected running time of the "cluster-popping" algorithm in bidirected graphs is bounded by a polynomial in the size of the input.
引用
收藏
页码:964 / 978
页数:15
相关论文
共 50 条
  • [21] Computational investigations of all-terminal network reliability via BDDs
    Imai, H
    Sekine, K
    Imai, K
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (05) : 714 - 721
  • [22] Estimation of all-terminal network reliability using an artificial neural network
    Srivaree-Ratana, C
    Konak, A
    Smith, AE
    COMPUTERS & OPERATIONS RESEARCH, 2002, 29 (07) : 849 - 868
  • [23] Rational roots of all-terminal reliability
    Brown, Jason I.
    DeGagne, Corey D. C.
    NETWORKS, 2020, 76 (01) : 75 - 83
  • [24] Deep Neural Networks for All-Terminal Network Reliability Estimation
    Davila-Frias, Alex
    Salem, Saeed
    Yadav, Om Prakash
    67TH ANNUAL RELIABILITY & MAINTAINABILITY SYMPOSIUM (RAMS 2021), 2021,
  • [25] Heuristic optimization of network design considering all-terminal reliability
    Deeter, DL
    Smith, AE
    ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM - 1997 PROCEEDINGS: THE INTERNATIONAL SYMPOSIUM ON PRODUCT QUALITY & INTEGRITY, 1997, : 194 - 199
  • [26] On the roots of all-terminal reliability polynomials
    Brown, Jason
    Mol, Lucas
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1287 - 1299
  • [27] Applying Machine Learning Methods to Improve All-Terminal Network Reliability
    Azucena, Jose
    Hashemian, Farid
    Liao, Haitao
    Pohl, Edward
    2023 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, RAMS, 2023,
  • [28] A POLYNOMIAL-TIME APPROXIMATION ALGORITHM FOR A GEOMETRIC DISPERSION PROBLEM
    Benkert, Marc
    Gudmundsson, Joachim
    Knauer, Christian
    Van Oostrum, Rene
    Wolff, Alexander
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2009, 19 (03) : 267 - 288
  • [29] A polynomial-time approximation algorithm for a geometric dispersion problem
    Benkert, Marc
    Gudmundsson, Joachim
    Knauer, Christian
    Moet, Esther
    van Oostrum, Rene
    Wolff, Alexander
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2006, 4112 : 166 - 175
  • [30] All-terminal network reliability estimation using convolutional neural networks
    Davila-Frias, Alex
    Yadav, Om Prakash
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2022, 236 (04) : 584 - 597