On discrete Lorenz-like attractors

被引:18
|
作者
Gonchenko, Sergey [1 ,2 ]
Gonchenko, Alexander [1 ]
Kazakov, Alexey [2 ]
Samylina, Evgeniya [2 ]
机构
[1] Lobachevsky State Univ, Math Ctr, 23 Prospekt Gagarina, Nizhnii Novgorod 603950, Russia
[2] Natl Res Univ Higher Sch Econ, 25-12 Bolshaya Pecherskaya Ulitsa, Nizhnii Novgorod 603155, Russia
基金
俄罗斯科学基金会;
关键词
COMPUTER-ASSISTED PROOF; NONHOLONOMIC MODEL; NEWHOUSE REGIONS; SPIRAL CHAOS; SYSTEMS; DYNAMICS; DIFFEOMORPHISMS; BIFURCATIONS; HYPERCHAOS; EXISTENCE;
D O I
10.1063/5.0037621
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study geometrical and dynamical properties of the so-called discrete Lorenz-like attractors. We show that such robustly chaotic (pseudohyperbolic) attractors can appear as a result of universal bifurcation scenarios, for which we give a phenomenological description and demonstrate certain examples of their implementation in one-parameter families of three-dimensional Henon-like maps. We pay special attention to such scenarios that can lead to period-2 Lorenz-like attractors. These attractors have very interesting dynamical properties and we show that their crises can lead, in turn, to the emergence of discrete Lorenz shape attractors of new types.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Optimum PID Control of Multi-wing Attractors in A Family of Lorenz-like Chaotic Systems
    Acharya, Anish
    Das, Saptarshi
    Pan, Indranil
    2012 THIRD INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION & NETWORKING TECHNOLOGIES (ICCCNT), 2012,
  • [32] Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points
    Cang, Shijian
    Li, Yue
    Zhang, Ruiye
    Wang, Zenghui
    NONLINEAR DYNAMICS, 2019, 95 (01) : 381 - 390
  • [33] COMPARISON OF LORENZ-LIKE LASER BEHAVIOR WITH THE LORENZ MODEL
    HUBNER, U
    KLISCHE, W
    ABRAHAM, NB
    WEISS, CO
    COHERENCE AND QUANTUM OPTICS VI, 1989, : 517 - 520
  • [34] Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points
    Shijian Cang
    Yue Li
    Ruiye Zhang
    Zenghui Wang
    Nonlinear Dynamics, 2019, 95 : 381 - 390
  • [35] PERIODS AND ENTROPY FOR LORENZ-LIKE MAPS
    ALSEDA, L
    LLIBRE, J
    MISIUREWICZ, M
    TRESSER, C
    ANNALES DE L INSTITUT FOURIER, 1989, 39 (04) : 929 - 952
  • [36] Nonlinear analysis in a Lorenz-like system
    Dias, Fabio Scalco
    Mello, Luis Fernando
    Zhang, Jian-Gang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3491 - 3500
  • [37] Fresh Look at Lorenz-like System
    Nguyen, Hang T. T.
    Meleshenko, Peter A.
    Semenov, Mikhail E.
    Kuznetsov, Ilya E.
    Gorlov, Vladimir A.
    Klinskikh, Alexander F.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 2255 - 2259
  • [38] Lyapunov Dimension Formulas for Lorenz-Like Systems
    Leonov, G. A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (14):
  • [39] RETRACTION: Lorenz-like attractors in a nonholonomic model of a rattleback (Retraction of Vol 15, Pg 521, 2013)
    Gonchenko, A. S.
    Gonchenko, S. V.
    NONLINEARITY, 2017, 30 (04) : C3 - C3
  • [40] Generalized synchronization of generalized Lorenz-like systems
    Li, Fang
    Hu, Ai-Hua
    Xu, Zhen-Yuan
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2006, 23 (04): : 627 - 630