AUTOMATED SCREENING OF DIABETIC RETINOPATHY WITH OPTIMIZED DEEP CONVOLUTIONAL NEURAL NETWORK: ENHANCED MOTH FLAME MODEL

被引:5
|
作者
Nair, Arun T. [1 ]
Muthuvel, K. [1 ]
机构
[1] Noorul Islam Ctr Higher Educ, Dept Elect & Elect Engn, Kumaracoil 629180, Tamil Nadu, India
关键词
Diabetic retinopathy; blood vessel segmentation; DR recognization; proposed LBP-based feature extraction; proposed optimization;
D O I
10.1142/S0219519421500056
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Nowadays, analysis on retinal image exists as one of the challenging area for study. Numerous retinal diseases could be recognized by analyzing the variations taking place in retina. However, the main disadvantage among those studies is that, they do not have higher recognition accuracy. The proposed framework includes four phases namely, (i) Blood Vessel Segmentation (ii) Feature Extraction (iii) Optimal Feature Selection and (iv) Classification. Initially, the input fundus image is subjected to blood vessel segmentation from which two binary thresholded images (one from High Pass Filter (HPF) and other from top-hat reconstruction) are acquired. These two images are differentiated and the areas that are common to both are said to be the major vessels and the left over regions are fused to form vessel sub-image. These vessel sub-images are classified with Gaussian Mixture Model (GMM) classifier and the resultant is summed up with the major vessels to form the segmented blood vessels. The segmented images are subjected to feature extraction process, where the features like proposed Local Binary Pattern (LBP), Gray-Level Co-Occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRM) are extracted. As the curse of dimensionality seems to be the greatest issue, it is important to select the appropriate features from the extracted one for classification. In this paper, a new improved optimization algorithm Moth Flame with New Distance Formulation (MF-NDF) is introduced for selecting the optimal features. Finally, the selected optimal features are subjected to Deep Convolutional Neural Network (DCNN) model for classification. Further, in order to make the precise diagnosis, the weights of DCNN are optimally tuned by the same optimization algorithm. The performance of the proposed algorithm will be compared against the conventional algorithms in terms of positive and negative measures.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] DIABETIC RETINOPATHY DETECTION BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS
    Chen, Yi-Wei
    Wu, Tung-Yu
    Wong, Wing-Hung
    Lee, Chen-Yi
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1030 - 1034
  • [32] Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening
    Shah, Payal
    Mishra, Divyansh K.
    Shanmugam, Mahesh P.
    Doshi, Bindiya
    Jayaraj, Hariprasad
    Ramanjulu, Rajesh
    [J]. INDIAN JOURNAL OF OPHTHALMOLOGY, 2020, 68 (02) : 398 - +
  • [33] Abnormal Blood Vessels Segmentation for Proliferative Diabetic Retinopathy Screening Using Convolutional Neural Network
    Agarwal, Vasavi
    Sipani, Ridhi
    Saranya, P.
    [J]. ADVANCES IN COMPUTING AND DATA SCIENCES, PT I, 2021, 1440 : 162 - 170
  • [34] Diabetic retinopathy detection by optimized deep learning model
    Rachapudi, Venubabu
    Rao, K. Subba
    Rao, T. Subha Mastan
    Dileep, P.
    Deepika Roy, T. L.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 27949 - 27971
  • [35] Diabetic retinopathy detection by optimized deep learning model
    Venubabu Rachapudi
    K. Subba Rao
    T. Subha Mastan Rao
    P. Dileep
    T.L. Deepika Roy
    [J]. Multimedia Tools and Applications, 2023, 82 : 27949 - 27971
  • [36] An Intelligent Particle Swarm Optimization with Convolutional Neural Network for Diabetic Retinopathy Classification Model
    Jayanthi, J.
    Jayasankar, T.
    Krishnaraj, N.
    Prakash, N. B.
    Britto, A. Sagai Francis
    Kumar, K. Vinoth
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2021, 11 (03) : 803 - 809
  • [37] EVALUATION OF CONVOLUTIONAL NEURAL NETWORK VARIANTS FOR DIAGNOSIS OF DIABETIC RETINOPATHY
    Bustamam, Alhadi
    Sarwinda, Devvi
    Paradisa, Radifa H.
    Victor, Andi Arus
    Yudantha, Anggun Rama
    Siswantining, Titin
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2021,
  • [38] Deep neural network with moth search optimization algorithm based detection and classification of diabetic retinopathy images
    Shankar, K.
    Perumal, Eswaran
    Vidhyavathi, R. M.
    [J]. SN APPLIED SCIENCES, 2020, 2 (04)
  • [39] A Convolutional Neural Network Model Using Weighted Loss Function to Detect Diabetic Retinopathy
    Masud, Mehedi
    Alhamid, Mohammed F.
    Zhang, Yin
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (01)
  • [40] Detection of Diabetic Retinopathy Using Bichannel Convolutional Neural Network
    Pao, Shu-, I
    Lin, Hong-Zin
    Chien, Ke-Hung
    Tai, Ming-Cheng
    Chen, Jiann-Torng
    Lin, Gen-Min
    [J]. JOURNAL OF OPHTHALMOLOGY, 2020, 2020