Uniform rectangular distribution of far-field intensity by optical phased array

被引:2
|
作者
Zhang, Lanxuan [1 ]
Wang, Yubing [2 ]
Hou, Yu [1 ]
Song, Junfeng [1 ,3 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, 2699 Qianjin St, Changchun 130012, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, Changchun 130010, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Optical phased array; Uniform rectangular distribution; Flash Lidar; FLASH LIDAR;
D O I
10.1016/j.optcom.2021.127661
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, to solve the problem of uneven distribution of far-field intensity of Flash Lidar, a method of amplitude modulation for optical phased array (OPA) is proposed, which makes the far-field intensity distribution close to the uniform rectangular distribution. We use the impulse response sequence of Finite Impulse Response (FIR) digital filter designed by the window functions to modulate the amplitude of the OPA. This kind of uniform intensity distribution can simultaneously detect a wide range with the same intensity. The modulation sequence can also be extended to two-dimensional situation. In the case of considering the radiation pattern of optical waveguide, the amplitude modulation sequence can also be modified to obtain the far-field pattern that is close to the uniform rectangular distribution.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Influence of filling factor on far-field intensity distribution in coherent beam combination
    Tan Yi
    Li Xin-Yang
    [J]. ACTA PHYSICA SINICA, 2014, 63 (09)
  • [42] THE FAR-FIELD OF A SPHERICAL ARRAY OF POINT DIPOLES
    KUMAR, BP
    BRANNER, GR
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1994, 42 (04) : 473 - 477
  • [43] THE FAR-FIELD EQUATORIAL ARRAY FOR BINAURAL RENDERING
    Ahrens, Jens
    Helmholz, Hannes
    Alon, David Lou
    Gari, Sebastia V. Amengual
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 421 - 425
  • [44] Inverse scattering with far-field intensity data
    Méndez, ER
    Macías, D
    Olague, G
    [J]. SURFACE SCATTERING AND DIFFRACTION III, 2003, 5189 : 59 - 67
  • [45] FAR-FIELD POTENTIALS IN CYLINDRICAL AND RECTANGULAR VOLUME CONDUCTORS
    DUMITRU, D
    KING, JC
    ROGERS, WE
    [J]. MUSCLE & NERVE, 1993, 16 (07) : 727 - 736
  • [46] Far-field intensity of Lorentz related beams
    Peng, Xi
    Chen, Chidao
    Chen, Bo
    Peng, Yulian
    Zhou, Meiling
    Zhang, Liping
    Li, Dongdong
    Deng, Dongmei
    [J]. OPTICS COMMUNICATIONS, 2016, 381 : 189 - 194
  • [47] Simultaneous far-field and aperture phase measurements of a 25 element coupled oscillator based phased array
    Pogorzelski, RJ
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 4088 - 4091
  • [48] SOURCE COHERENCE AND FAR-FIELD INTENSITY PATTERNS
    MCGUIRE, D
    [J]. OPTICS COMMUNICATIONS, 1979, 29 (01) : 17 - 21
  • [49] Nanoparticle Measurement in the Optical Far-Field
    Little, D. J.
    Kuruwita, R. L.
    Joyce, A.
    Gao, Q.
    Burgess, T.
    Jagadish, C.
    Kane, D. M.
    [J]. 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [50] Far-field superlens - Optical nanoscope
    Narimanov, Evgenii E.
    [J]. NATURE PHOTONICS, 2007, 1 (05) : 260 - 261