Generalized non-abelian Toda models of dyonic type

被引:0
|
作者
Gomes, JF [1 ]
Sotkov, GM [1 ]
Zimerman, AH [1 ]
机构
[1] UNESP, IFT, BR-01405900 Sao Paulo, Brazil
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The construction of a class of non-abelian Toda models admiting dyonic type soliton solutions is reviewed.
引用
收藏
页码:315 / 318
页数:4
相关论文
共 50 条
  • [21] Non-abelian discrete Toda chains and related lattices
    Bobrova, Irina
    Retakh, Vladimir
    Rubtsov, Vladimir
    Sharygin, Georgy
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 464
  • [22] QUANTUM NON-ABELIAN TODA FIELD-THEORIES
    JACK, I
    JONES, DRT
    PANVEL, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (20): : 3631 - 3656
  • [23] Generalized Kitaev Models and Extrinsic Non-Abelian Twist Defects
    Barkeshli, Maissam
    Jiang, Hong-Chen
    Thomale, Ronny
    Qi, Xiao-Liang
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (02)
  • [24] W-algebras for non-abelian Toda systems
    Nirov, KS
    Razumov, AV
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2003, 48 (04) : 505 - 545
  • [25] THE RELATIONSHIP BETWEEN NON-ABELIAN MATRIX TODA-LATTICES AND ISING-TYPE MODELS OF STATISTICAL-MECHANICS
    CHUDNOVSKY, DV
    CHUDNOVSKY, GV
    [J]. PHYSICS LETTERS A, 1981, 84 (07) : 353 - 356
  • [26] MODELS OF NON-ABELIAN ORBIFOLDS
    CHANG, NP
    LI, DX
    [J]. PHYSICS LETTERS B, 1988, 206 (01) : 51 - 56
  • [27] Qualitative behavior of non-Abelian Toda-like flows
    Koelling, ME
    Bloch, AM
    Gekhtman, M
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 199 (3-4) : 317 - 338
  • [28] Non-Abelian Toda lattice and analogs of Painleve III equation
    Adler, V. E.
    Kolesnikov, M. P.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (10)
  • [29] BLACK-HOLES FROM NON-ABELIAN TODA THEORIES
    GERVAIS, JL
    SAVELIEV, MV
    [J]. PHYSICS LETTERS B, 1992, 286 (3-4) : 271 - 278
  • [30] Abelian and non-abelian branes in WZW models and gerbes
    Gawedzki, K
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 258 (01) : 23 - 73