An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation
被引:63
|
作者:
Zhai, Shuying
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Zhai, Shuying
[1
]
Feng, Xinlong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Feng, Xinlong
[1
]
He, Yinnian
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
He, Yinnian
[1
,2
]
机构:
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
A high-order compact finite difference method is presented for solving the three-dimensional (3D) time-fractional convection-diffusion equation (of order alpha is an element of (1,2)). The original equation is first transformed to a fractional diffusion-wave equation, then using fourth-order Pade approximation for spatial derivatives and the center difference method for time derivative respectively, a fully discrete implicit compact scheme is obtained. Furthermore, based on different splitting terms, three unconditionally stable ADI compact schemes with optimal convergence order are developed respectively. The resulting schemes in each ADI solution step corresponding to a strictly diagonally dominant matrix equation can be solved using the 1D tridiagonal Thomas algorithm with a considerable saving in computing time. Numerical experiments show that these schemes can significantly improve the time accuracy. (C) 2014 Elsevier Inc. All rights reserved.