Distinguishing 'missing at random'' and ''missing completely at random''

被引:187
|
作者
Heitjan, DF [1 ]
Basu, S [1 ]
机构
[1] INDIAN STAT INST,MATH & STAT UNIT,CALCUTTA 700035,W BENGAL,INDIA
来源
AMERICAN STATISTICIAN | 1996年 / 50卷 / 03期
关键词
Bayesian inference; coarse data; frequentist inference; ignorability; incomplete data; likelihood inference; missing data;
D O I
10.2307/2684656
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Missing at random (MAR) and missing completely at random (MCAR) are ignorability conditions-when they hold, they guarantee that certain kinds of inferences may be made without recourse to complicated missing-data modeling. In this article we review the definitions of MAR, MCAR, and their recent generalizations. We apply the definitions in three common incomplete-data examples, demonstrating by simulation the consequences of departures from ignorability. We argue that practitioners who face potentially nonignorable incomplete data must consider both the mode of inference and the nature of the conditioning when deciding which ignorability condition to invoke.
引用
收藏
页码:207 / 213
页数:7
相关论文
共 50 条
  • [31] MissMech: An R Package for Testing Homoscedasticity, Multivariate Normality, and Missing Completely at Random (MCAR)
    Jamshidian, Mortaza
    Jalal, Siavash
    Jansen, Camden
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 56 (06): : 1 - 31
  • [32] Examining the Missing Completely at Random Mechanism in Incomplete Data Sets: A Multiple Testing Approach
    Raykov, Tenko
    Lichtenberg, Peter A.
    Paulson, Daniel
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2012, 19 (03) : 399 - 408
  • [33] A 'missing not at random' (MNAR) and 'missing at random' (MAR) growth model comparison with a buprenorphine/naloxone clinical trial
    McPherson, Sterling
    Barbosa-Leiker, Celestina
    Mamey, Mary Rose
    McDonell, Michael
    Enders, Craig K.
    Roll, John
    [J]. ADDICTION, 2015, 110 (01) : 51 - 58
  • [34] Missing at random: a stochastic process perspective
    Farewell, D. M.
    Daniel, R. M.
    Seaman, S. R.
    [J]. BIOMETRIKA, 2022, 109 (01) : 227 - 241
  • [35] Lines missing every random point
    Lutz, Jack H.
    Lutz, Neil
    [J]. COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2015, 4 (02): : 85 - 102
  • [36] Regularized approach for data missing not at random
    Tseng, Chi-hong
    Chen, Yi-Hau
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (01) : 134 - 150
  • [37] QUANTILE REGRESSION WITH COVARIATES MISSING AT RANDOM
    Wei, Ying
    Yang, Yunwen
    [J]. STATISTICA SINICA, 2014, 24 (03) : 1277 - 1299
  • [38] Dimension reduction with missing response at random
    Guo, Xu
    Wang, Tao
    Xu, Wangli
    Zhu, Lixing
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 69 : 228 - 242
  • [39] Nonparametric Regression With Predictors Missing at Random
    Efromovich, Sam
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 306 - 319
  • [40] Random forest missing data algorithms
    Tang, Fei
    Ishwaran, Hemant
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2017, 10 (06) : 363 - 377