Cooperative multi-agent system for production control using reinforcement learning

被引:34
|
作者
Dittrich, Marc-Andre [1 ]
Fohlmeister, Silas [1 ]
机构
[1] Leibniz Univ Hannover, Inst Prod Engn & Machine Tools IFW, Hannover, Germany
关键词
Production planning; Machine learning; Multi-agent system;
D O I
10.1016/j.cirp.2020.04.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi-agent systems can limit the control problem in complex production systems and solve them more efficiently. However, they often show local optimization tendencies. This paper presents a novel approach for a cooperative multi-agent system, which uses reinforcement learning and considers global key performance indicators. For this purpose, a central deep q-learning module transfers its knowledge to the cooperative order agents. The order agent's experience is stored in a replay memory for subsequent reinforcement learning. Interdependencies between the characteristics of nonlinear production systems and learning parameters are investigated and the performance is evaluated in comparison to conventional methods of production control. (C) 2020 CIRP. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:389 / 392
页数:4
相关论文
共 50 条
  • [21] Cooperative perception in Vehicular Networks using Multi-Agent Reinforcement Learning
    Abdel-Aziz, Mohamed K.
    Samarakoon, Sumudu
    Perfecto, Cristina
    Bennis, Mehdi
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 408 - 412
  • [22] Learning Cooperative Intrinsic Motivation in Multi-Agent Reinforcement Learning
    Hong, Seung-Jin
    Lee, Sang-Kwang
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 1697 - 1699
  • [23] Cooperative Learning of Multi-Agent Systems Via Reinforcement Learning
    Wang, Xin
    Zhao, Chen
    Huang, Tingwen
    Chakrabarti, Prasun
    Kurths, Juergen
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 : 13 - 23
  • [24] Multi-agent cooperative learning research based on reinforcement learning
    Liu, Fei
    Zeng, Guangzhou
    2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 1408 - 1413
  • [25] Cooperative Multi-Agent Reinforcement Learning With Approximate Model Learning
    Park, Young Joon
    Lee, Young Jae
    Kim, Seoung Bum
    IEEE ACCESS, 2020, 8 : 125389 - 125400
  • [26] Cooperative Multi-Agent Reinforcement Learning with Hypergraph Convolution
    Bai, Yunpeng
    Gong, Chen
    Zhang, Bin
    Fan, Guoliang
    Hou, Xinwen
    Lu, Yu
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [27] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896
  • [28] Levels of Realism for Cooperative Multi-agent Reinforcement Learning
    Cunningham, Bryan
    Cao, Yong
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 573 - 582
  • [29] Cooperative Multi-agent Reinforcement Learning for Inventory Management
    Khirwar, Madhav
    Gurumoorthy, Karthik S.
    Jain, Ankit Ajit
    Manchenahally, Shantala
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VI, 2023, 14174 : 619 - 634
  • [30] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    Applied Intelligence, 2023, 53 : 13677 - 13722