Feature Selection with Renyi Min-Entropy

被引:1
|
作者
Palamidessi, Catuscia [1 ,2 ]
Romanelli, Marco [1 ,2 ,3 ]
机构
[1] Ecole Polytech, INRIA, Paris, France
[2] Univ Paris Saclay, Paris, France
[3] Univ Siena, Siena, Italy
关键词
MUTUAL INFORMATION; CLASSIFICATION;
D O I
10.1007/978-3-319-99978-4_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of feature selection, and we propose a new information-theoretic algorithm for ordering the features according to their relevance for classification. The novelty of our proposal consists in adopting Renyi min-entropy instead of the commonly used Shannon entropy. In particular, we adopt a notion of conditional min-entropy that has been recently proposed in the field of security and privacy, and which is strictly related to the Bayes error. We evaluate our method on two classifiers and three datasets, and we show that it compares favorably with the corresponding one based on Shannon entropy.
引用
收藏
页码:226 / 239
页数:14
相关论文
共 50 条
  • [1] Obfuscation Padding Schemes that Minimize Renyi Min-Entropy for Privacy
    Simon, Sebastian
    Petrui, Cezara
    Pinzon, Carlos
    Palamidessi, Catuscia
    [J]. INFORMATION SECURITY PRACTICE AND EXPERIENCE, ISPEC 2023, 2023, 14341 : 74 - 90
  • [2] Min-entropy as a resource
    Espinoza, Barbara
    Smith, Geoffrey
    [J]. INFORMATION AND COMPUTATION, 2013, 226 : 57 - 75
  • [3] On the Efficient Estimation of Min-Entropy
    Kim, Yongjune
    Guyot, Cyril
    Kim, Young-Sik
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 3013 - 3025
  • [4] The complexity of estimating min-entropy
    Watson, Thomas
    [J]. COMPUTATIONAL COMPLEXITY, 2016, 25 (01) : 153 - 175
  • [5] On simultaneous min-entropy smoothing
    Drescher, Lukas
    Fawzi, Omar
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 161 - 165
  • [6] The complexity of estimating min-entropy
    Thomas Watson
    [J]. computational complexity, 2016, 25 : 153 - 175
  • [7] Improved Bounds on Fourier Entropy and Min-entropy
    Arunachalam, Srinivasan
    Chakraborty, Sourav
    Koucky, Michal
    Saurabh, Nitin
    De Wolf, Ronald
    [J]. ACM TRANSACTIONS ON COMPUTATION THEORY, 2021, 13 (04)
  • [8] Improved Bounds on Fourier Entropy and Min-Entropy
    Arunachalam, Srinivasan
    Chakraborty, Sourav
    Koucky, Michal
    Saurabh, Nitin
    de Wolf, Ronald
    [J]. 37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [9] Quasi chain rule for min-entropy
    Dziembowski, Stefan
    Kazana, Tomasz
    Zdanowicz, Maciej
    [J]. INFORMATION PROCESSING LETTERS, 2018, 134 : 62 - 66
  • [10] Extractors for Near Logarithmic Min-Entropy
    Cohen, Gil
    Schulman, Leonard J.
    [J]. 2016 IEEE 57TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2016, : 178 - 187