The complexity of estimating min-entropy

被引:5
|
作者
Watson, Thomas [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
基金
美国国家科学基金会;
关键词
Complexity; min-entropy; approximate counting; samplable distributions; ARTHUR-MERLIN GAMES; APPROXIMATE; PSEUDORANDOMNESS; PROOFS;
D O I
10.1007/s00037-014-0091-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Goldreich et al. (CRYPTO 1999) proved that the promise problem for estimating the Shannon entropy of a distribution sampled by a given circuit is NISZK-complete. We consider the analogous problem for estimating the min-entropy and prove that it is SBP-complete, where SBP is the class of promise problems that correspond to approximate counting of NP witnesses. The result holds even when the sampling circuits are restricted to be 3-local. For logarithmic-space samplers, we observe that this problem is NP-complete by a result of Lyngso and Pedersen on hidden Markov models (JCSS 65(3):545-569, 2002).
引用
收藏
页码:153 / 175
页数:23
相关论文
共 50 条
  • [1] The complexity of estimating min-entropy
    Thomas Watson
    [J]. computational complexity, 2016, 25 : 153 - 175
  • [2] Min-entropy as a resource
    Espinoza, Barbara
    Smith, Geoffrey
    [J]. INFORMATION AND COMPUTATION, 2013, 226 : 57 - 75
  • [3] On the Efficient Estimation of Min-Entropy
    Kim, Yongjune
    Guyot, Cyril
    Kim, Young-Sik
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 3013 - 3025
  • [4] Permutation Min-Entropy and Statistical Complexity Analysis of Electricity Spot Price
    Fan, Qingju
    Li, Dan
    [J]. FLUCTUATION AND NOISE LETTERS, 2015, 14 (04):
  • [5] On simultaneous min-entropy smoothing
    Drescher, Lukas
    Fawzi, Omar
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 161 - 165
  • [6] Improved Bounds on Fourier Entropy and Min-entropy
    Arunachalam, Srinivasan
    Chakraborty, Sourav
    Koucky, Michal
    Saurabh, Nitin
    De Wolf, Ronald
    [J]. ACM TRANSACTIONS ON COMPUTATION THEORY, 2021, 13 (04)
  • [7] Improved Bounds on Fourier Entropy and Min-Entropy
    Arunachalam, Srinivasan
    Chakraborty, Sourav
    Koucky, Michal
    Saurabh, Nitin
    de Wolf, Ronald
    [J]. 37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [8] Quasi chain rule for min-entropy
    Dziembowski, Stefan
    Kazana, Tomasz
    Zdanowicz, Maciej
    [J]. INFORMATION PROCESSING LETTERS, 2018, 134 : 62 - 66
  • [9] Extractors for Near Logarithmic Min-Entropy
    Cohen, Gil
    Schulman, Leonard J.
    [J]. 2016 IEEE 57TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2016, : 178 - 187
  • [10] Methods for Estimating the Convergence of Inter-Chip Min-Entropy of SRAM PUFs
    Liu, Hailong
    Liu, Wenchao
    Lu, Zhaojun
    Tong, Qiaoling
    Liu, Zhenglin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (02) : 593 - 605