Stability of a Continuous Reaction-Diffusion Cournot-Kopel Duopoly Game Model

被引:14
|
作者
Rionero, Salvatore [1 ,2 ]
Torcicollo, Isabella [3 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Naples, Italy
[2] Accademia Nazl Lincei, I-00165 Rome, Italy
[3] CNR, Ist Applicaz Calcolo M Picone, Via P Castellino 111, I-80131 Naples, Italy
关键词
Continuous Cournot-Kopel model; Nonlinear duopoly game; Nonlinear stability; Nonautonomous binary dynamical systems of PDEs; Self-diffusion; Cross-diffusion; Liapunov Direct Method; NONLINEAR L-2-STABILITY ANALYSIS; DYNAMICS; SYSTEM;
D O I
10.1007/s10440-014-9932-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to take into account the territory in which the outputs are in the market and the time-depending firms' strategies, the discrete Cournot duopoly game (with adaptive expectations, modeled by Kopel) is generalized through a non autonomous reaction-diffusion binary system of PDEs, with self and cross diffusion terms. Linear and nonlinear asymptotic L (2)-stability, via the Liapunov Direct Methot and a nonautonomous energy functional, are investigated.
引用
收藏
页码:505 / 513
页数:9
相关论文
共 50 条
  • [1] Stability of a Continuous Reaction-Diffusion Cournot-Kopel Duopoly Game Model
    Salvatore Rionero
    Isabella Torcicollo
    [J]. Acta Applicandae Mathematicae, 2014, 132 : 505 - 513
  • [2] Basins of attraction in a Cournot duopoly model of Kopel
    Anderson, DR
    Myran, NG
    White, DL
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (10) : 879 - 887
  • [3] On the dynamics of Kopel's Cournot duopoly model
    Canovas, J. S.
    Munoz-Guillermo, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 330 : 292 - 306
  • [4] Stable cycles in a Cournot duopoly model of Kopel
    Govaerts, W.
    Ghaziani, R. Khoshsiar
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 247 - 258
  • [5] Lyapunov Stability in the Cournot Duopoly Game
    Zhu, Dan
    Ni, Debing
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2023, 2023
  • [7] On the dynamics of a nonlinear reaction-diffusion duopoly model
    Rionero, Salvatore
    Torcicollo, Isabella
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 99 : 105 - 111
  • [8] Stability and Chaos of the Duopoly Model of Kopel: A Study Based on Symbolic Computations
    Li, Xiaoliang
    Chen, Kongyan
    Niu, Wei
    Huang, Bo
    [J]. COMPUTATIONAL ECONOMICS, 2024,
  • [9] Delay Cournot Duopoly Game with Gradient Adjustment: Berezowski Transition from a Discrete Model to a Continuous Model
    Matsumoto, Akio
    Szidarovszky, Ferenc
    Nakayama, Keiko
    [J]. MATHEMATICS, 2021, 9 (01) : 1 - 19
  • [10] STABILITY IN A REACTION-DIFFUSION MODEL OF MUTUALISM
    HUTSON, V
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (01) : 58 - 66