PURE DISCRETE SPECTRUM FOR A CLASS OF ONE-DIMENSIONAL SUBSTITUTION TILING SYSTEMS

被引:9
|
作者
Barge, Marcy [1 ]
机构
[1] Montana State Univ, Dept Math Sci, Bozeman, MT 59717 USA
关键词
Substitution; tiling space; discrete spectrum; maximal equicontinuous factor; PISOT SUBSTITUTIONS; COINCIDENCE; DYNAMICS;
D O I
10.3934/dcds.2016.36.1159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if a primitive and non-periodic substitution is injective on initial letters, constant on final letters, and has Pisot inflation, then the R-action on the corresponding tiling space has pure discrete spectrum. As a consequence, all beta-substitutions for beta a Pisot simple Parry number have tiling dynamical systems with pure discrete spectrum, as do the Pisot systems arising, for example, from substitutions associated with the Jacobi-Perron and Brun continued fraction algorithms.
引用
收藏
页码:1159 / 1173
页数:15
相关论文
共 50 条
  • [31] ENDOMORPHISMS OF STURMIAN SYSTEMS AND THE DISCRETE CHAIR SUBSTITUTION TILING SYSTEM
    Olli, Jeanette
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (09) : 4173 - 4186
  • [32] The discrete spectrum of the spinless one-dimensional Salpeter Hamiltonian perturbed by δ-interactions
    Albeverio, Sergio
    Fassari, Silvestro
    Rinaldi, Fabio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (18) : 1 - 25
  • [33] Persistence of Point Spectrum for Perturbations of One-Dimensional Operators with Discrete Spectra
    de Oliveira, Cesar R.
    Pigossi, Mariane
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS, STMP 2018, 2020, : 125 - 151
  • [34] Dimension of the spectrum of one-dimensional discrete Schrodinger operators with Sturmian potentials
    Liu, Qing-Hui
    Peyriere, Jacques
    Wen, Zhi-Ying
    COMPTES RENDUS MATHEMATIQUE, 2007, 345 (12) : 667 - 672
  • [35] ON A CLASS OF ONE-DIMENSIONAL CHAOTIC DISCRETE DYNAMICAL SYSTEMS WITH ONE OR TWO STEP TYPE PIECEWISE UNIFORM INVARIANT DENSITY
    Yasuda, Toshihiko
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (01): : 87 - 96
  • [36] Critical exponents in the transition to chaos in one-dimensional discrete systems
    G Ambika
    N V Sujatha
    Pramana, 2002, 59 : 9 - 18
  • [37] FUNCTIONAL EQUIVALENCE IN A CLASS OF AUTONOMOUS ONE-DIMENSIONAL NON-LINEAR DISCRETE-TIME-SYSTEMS
    KLEIN, QL
    KALISKI, ME
    INFORMATION AND CONTROL, 1979, 42 (02): : 131 - 147
  • [38] Discrete gradient algorithms of high order for one-dimensional systems
    Cieslinski, Jan L.
    Ratkiewicz, Boguslaw
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (03) : 617 - 627
  • [39] One-Dimensional Discrete Combustion Waves in Periodical and Random Systems
    Rashkovskiy, Sergey A.
    Kumar, G. Manoj
    Tewari, Surya P.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2010, 182 (08) : 1009 - 1028
  • [40] Critical exponents in the transition to chaos in one-dimensional discrete systems
    Ambika, G
    Sujatha, NV
    PRAMANA-JOURNAL OF PHYSICS, 2002, 59 (01): : 9 - 18