A non-linear rod model for folded elastic strips

被引:58
|
作者
Dias, Marcelo A. [1 ]
Audoly, Basile [2 ]
机构
[1] Brown Univ, Sch Engn, Providence, RI 02912 USA
[2] Univ Paris 06, UPMC, Inst Jean Rond Alembert, CNRS,UMR 7190, F-75005 Paris, France
基金
美国国家科学基金会;
关键词
Buckling; Beams and columns; Plates; Stability and bifurcation; Asymptotic analysis; ORIGAMI; SHAPE; RINGS;
D O I
10.1016/j.jmps.2013.08.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the equilibrium shapes of a thin, annular strip cut out in an elastic sheet. When a central fold is formed by creasing beyond the elastic limit, the strip has been observed to buckle out-of-plane. Starting from the theory of elastic plates, we derive a Kirchhoff rod model for the folded strip. A non-linear effective constitutive law incorporating the underlying geometrical constraints is derived, in which the angle the ridge appears as an internal degree of freedom. By contrast with traditional thin-walled beam models, this constitutive law captures large, non-rigid deformations of the cross-sections, including finite variations of the dihedral angle at the ridge. Using this effective rod theory, we identify a buckling instability that produces the out-of-plane configurations of the folded strip, and show that the strip behaves as an elastic ring having one frozen mode of curvature. In addition, we point out two novel buckling patterns: one where the centerline remains planar and the ridge angle is modulated; another one where the bending deformation is localized. These Patterns are observed experimentally, explained based on stability analyses, and reproduced in simulations of the post-buckled configurations. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:57 / 80
页数:24
相关论文
共 50 条
  • [31] STABILITY OF NON-LINEAR ELASTIC SHELLS
    BABENKO, VI
    SENENKO, AD
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (10): : 889 - 892
  • [32] EQUATIONS OF NON-LINEAR ELASTIC FERROELECTRICS
    MAUGIN, GA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (06): : T215 - T217
  • [33] An Interaction-Aware, Perceptual Model for Non-Linear Elastic Objects
    Piovarci, Michal
    Levin, David I. W.
    Rebello, Jason
    Chen, Desai
    Durikovic, Roman
    Pfister, Hanspeter
    Matusik, Wojciech
    Didyk, Piotr
    ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (04):
  • [34] The non-linear constitutive model of elastic rubber mat for rail vehicles
    Yang J.
    Chi M.-R.
    Zhu M.-H.
    Zeng J.
    Wu P.-B.
    Shen K.
    2016, Nanjing University of Aeronautics an Astronautics (29): : 291 - 297
  • [35] GENERALIZED NON-LINEAR ELASTIC INVERSION WITH CONSTRAINTS IN MODEL AND DATA SPACES
    CARRION, PM
    GEOPHYSICAL JOURNAL-OXFORD, 1989, 96 (01): : 151 - 162
  • [36] NON-LINEAR DISCRETE-CONTINUOUS MODEL OF ELASTIC LAYERED BODIES
    BACZYNSKI, ZF
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1978, 26 (04): : 303 - 309
  • [37] A non-linear model for elastic hysteresis in the time domain: Computational procedure
    Dwaikat, M. M. S.
    Spitas, C.
    Spitas, V
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (20) : 4625 - 4636
  • [38] Electric and elastic properties of linear and non-linear composites
    Milton, GW
    IUTAM SYMPOSIUM ON MECHANICAL AND ELECTROMAGNETIC WAVES IN STRUCTURED MEDIA, 2001, 91 : 3 - 14
  • [39] Asymptotics of a non-planar rod in non-linear elasticity
    Laboratoire d'Analyse Non Linéaire Appliquée et Modélisation, Université de Toulon et du Var, BP 132-83957, La Garde cedex, France
    Asymptotic Anal, 2006, 1-2 (33-54):
  • [40] Asymptotics of a non-planar rod in non-linear elasticity
    Pideri, C.
    Seppecher, P.
    ASYMPTOTIC ANALYSIS, 2006, 48 (1-2) : 33 - 54